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Postoptimal analysis of a finite cooperative game

Vladimir Emelichev, Olga Karelkina

Abstract. We consider a finite cooperative game of several players with parameter-
ized concept of equilibrium (optimality principles), when relations between players in
coalition are based on the Pareto maximum. Introduction of this optimality principle
allows to connect classical notions of the Pareto optimality and Nash equilibrium.
Lower and upper bounds are obtained for the strong stability radius of the game un-
der parameters perturbations with the assumption that arbitrary Hölder norms are
defined in the space of outcomes and criteria space. Game classes with an infinite
radius are defined.
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1 Introduction

Rapid development of the various fields of informational technology, economics,
social sphere, important part of which is integrity, high complexity and existence of
uncertainty factors, requires an adequate development in the corresponding fields of
system analysis, management and operations research. One of the main problems
arising in this direction is multiobjective decision making in the presence of conflict,
uncertainty and risk. An effective tool for modeling decision-making processes is the
apparatus of mathematical game theory.

Game-theoretic models target finding classes of outcomes that are rationally co-
ordinated in terms of possible actions and interests of participants (players) or a
group of participants (coalitions). For each game in normal form, coalitional and
non-coalitional equilibrium concepts (principles of optimality) are used, which usu-
ally lead to different game outcomes. In the theory of non-antagonistic games there
is no single approach to the development of such concepts. The most famous one
is the concept of the Nash equilibrium [13,14], as well as its various generalizations
related to the problems of group choice, which is understood as the reduction of
various individual preferences into a single collective preference.

This work implements a parametrization of the equilibrium concept of a finite
game in normal form. The parameter of this parametrization is the method of
dividing players into coalitions, in which the two extreme cases (a single coalition
of players and a set of single-player coalitions) correspond to the Pareto optimal
outcome and the Nash equilibrium outcome. Quantitative stability analysis for
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the set of all efficient (generalized equilibrium) outcomes from the point of view of
invariance with respect to changes in the parameters of the game is carried out.

Usually under stability of a multicriteria discrete optimization problem we un-
derstand a discrete analog of the Hausdorff upper semicontinuity property [1] of an
optimal mapping that defines a choice function, i.e. in our case it is the existence
of a neighborhood in the space of game parameters inside which the appearance of
new efficient outcomes is not possible. Relaxation of this requirement leads to the
stability type which is interpreted as the existence of a neighborhood of initial gains
of the game, inside which appearance of new efficient outcomes is possible but for
each perturbation there exists at least one efficient outcome of the initial game (not
necessarily the same) that remains efficient. Following terminology [10,12], this type
of stability is called strong.

In the paper lower and upper bounds of the strong stability radius are found for
the game which is optimal for the given partition of players into coalitions under
the assumption that arbitrary Hölder’s norms are defined in the space of outcomes
and criteria space. The classes of all games with infinite strong stability radius are
specified. The strong stability radius of the game of finding the Nash set is obtained
as a corollary.

Note that analogous quantitative characteristics of the various stability types of
multicriteria parameterized problems of game theory and discrete linear program-
ming problems with other principles of optimality, stability types and metrics defined
in the space of parameters were obtained in works [2–9].

2 Basic definitions and notations

We consider the main object of study in game theory – finite game of n players
in normal form [19], where each player i ∈ Nn = {1, 2, . . . , n}, n ≥ 2, has a set of
outcomes Xi ⊂ R, 2 ≤ |Xi| ≤ ∞. The outcome of the game is a realization of the
strategies chosen by all the players. This choice is made by the players independently.
Let linear payoff functions

fi(x) = Cix, i ∈ Nn,

where Ci is the i-th row of a square matrix C = [cij ] ∈ R
n×n, x = (x1, x2, . . . , xn)T ∈

Xj , are defined on the set of all outcomes of the game

X =
∏

j∈Nn

Xj ⊂ R
n.

As a result of the game, which we call the game with matrix C, each player i
gains payoff fi(x) which player tries to maximize using preference relationships.

We assume all players try to maximize own payoffs simultaneously:

Cx = (C1x,C2x, ..., Cnx)
T → max

x∈X
. (1)
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A non-empty subset J ⊆ Nn is called a coalition of players. For a coalition J
and game outcome x0 = (x0

1, x
0
2, . . . , x

0
n)T we introduce a set

V (x0, J) =
∏

j∈Nn

Vj(x
0, J)

where

Vj(x
0, J) =

{
Xj if j ∈ J,

{x0
j} if j ∈ Nn\J.

Thus, Vj(x
0, J) is the set of outcomes that are reachable by coalition J from the

outcome x0. It is clear that V (x0, Nn) = X and V (x0, k) = Xk for any x0, k ∈ Nn.
Further we use a binary relation of preference by Pareto [16] ≺ in space R

k of ar-
bitrary dimension k ∈ N, assuming that for two different vectors y = (y1, y2, . . . , yk)

T

and y′ = (y′1, y
′
2, . . . , y

′
k)

T in the space the following formula is valid

y ≺ y′ ⇔ y ≤ y′ & y 6= y′.

The symbol ≺, as usual, denotes the negotiation of the relation ≺.
Let s ∈ Nn, and letNn =

⋃
k∈Ns

Jk be a partition of the setNn into s nonempty sets

(coalitions), i.e. Jk 6= ∅, k ∈ Ns, and p 6= q ⇒ Jp ∩ Jq = ∅. A set of (J1, J2, ..., Js)-
efficient outcomes is introduced according to the formula:

G(C, J1, J2, . . . , Js) ={
x ∈ X : ∀k ∈ Ns ∀x′ ∈ V (x, Jk)

(
CJk

x≺CJk
x′
)}
,

(2)

where CJk
is a |Jk| ×n submatrix of matrix C consisting of rows that correspond to

players in coalition Jk. For brevity, we denote this set by G(C).
Thus, preference relations between players within each coalition are based on

Pareto dominance. Therefore, the set of all Nn-efficient outcomes G(C,Nn) (s = 1,
i.e. all players are united in one coalition) is Pareto set of game (1) (set of efficient
outcomes) [16]:

P (C) =
{
x ∈ X : X(x,C) = ∅

}
,

where
X(x,C) =

{
x′ ∈ X : Cx ≺ Cx′

}
.

Rationality of a cooperative-efficient outcome x ∈ P (C) is that increase of the
payoff of any player is possible only by decreasing the payoff of at least one of the
other players.

In the other extreme case, when s = n, G(C, {1}, {2}, ..., {n}) becomes a set of
the Nash equilibria [13,14]. This set is denoted by NE(C) and defined as follows:

NE(C) =
{
x ∈ X : 6 ∃k ∈ Nn 6 ∃x′ ∈ X

(
Ckx < Ckx

′ & xNn\{k} = x′Nn\{k}

)}
,

where xNn\{k} is a projection of vector x ∈ X to the coordinate axis of space R
n

with numbers from the set Nn\{k}.
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It is easy to see that rationality of the Nash equilibrium is that no player can
individually deviate from the own equilibrium strategy choice while others keep
playing their equilibrium strategies. Strict axioms regarding perfect and common
(shared) knowledge are assumed to be fulfilled [15].

Thus, we have just introduced a parametrization of the equilibrium concept for
a finite game in normal form. The parameter s of this parameterization is the
partitioning of all the players into coalitions J = (J1, J2, ..., Js), in which the two
extreme cases (a single coalition of players and a set of n single-player coalitions)
correspond to finding the Pareto optimal outcomes P (C) and the Nash equilibrium
outcomes NE(C), respectively.

Denoted by Z(C, J1, J2, . . . , Js), the game that consists in finding the set
G(C, J1, J2, . . . , Js). Sometimes for brevity, we use the notation Z(C) for this prob-
lem.

Without loss of generality, we assume that the elements of partitioning Nn =⋃
k∈Ns

Jk be defined as follows:

J1 = {1, 2, . . . , t1},

J2 = {t1 + 1, t1 + 2, . . . , t2},

. . .

Js = {ts−1 + 1, ts−1 + 2, . . . , n}.

For any k ∈ Ns, let Ck denote a square submatrix of size |Jk| × |Jk|, consisting of
those matrix C elements locates at the crossings of rows and columns with numbers
Jk, and let P (Ck) be the Pareto set:

P (Ck) = {z ∈ XJk
: X(z,Ck) = ∅},

where
X(z,Ck) = {z′ ∈ XJk

: Ckz ≺ Ckz′},

of the |Jk|-criteria problem Z(Ck).

Ckz → max
z∈XJ

k

,

where z = (z1, z2, . . . , z|Jk|)
T , and XJk

is a projection of X onto Jk, i.e.

XJk
=
∏

j∈Jk

Xj ⊂ R
|Jk|.

This problem is called a partial problem of the game Z(C, J1, J2, . . . , Js).
Due to the fact that the payoff linear functions Cix, i ∈ Nn, are separable,

according to 2, the following equality is valid:

G(C, J1, J2, . . . , Js) =

s∏

k=1

P (Ck). (3)
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In the definition of (J1, J2, ..., Js)-efficiency in the game with matrix C ∈ R
n×n

only block-diagonal elements C1, C2, . . . , Cs matter. Thus, the set of (J1, J2, ..., Js)-
efficient outcomes of the game Z(C, J1, J2, ..., Js) will be denoted

G(C̃, J1, J2, . . . , Js),

where C̃ = {C1, C2, . . . , Cs}.
In the space of an arbitrary size R

k, we define Hölder’s norm lp, p ∈ [1,∞], i.e.
by the norm of the vector a = (a1, a2, ..., ak)T ∈ R

k we mean the number

‖a‖p =





(
∑

j∈Nk

|aj |
p

)1/p

if 1 ≤ p <∞,

max
{
|aj | : j ∈ Nk

}
if p = ∞.

The norm of matrix C ∈ R
k×k with the rows Ci, i ∈ Nk, is defined as the norm

of a vector whose components are the norms of the rows of the matrix C. By that,
we have

‖C‖pq =
∥∥(‖C1‖p, ‖C2‖p, . . . , ‖Ck‖p)

∥∥
q
,

where lq, q ∈ [1,∞], is another Hölder’s norm, i.e. lq may differ from lp in general
case.

It is easy to see that for any p, q ∈ [1,∞], and for any i ∈ Nn we have

‖Ci‖p ≤ ‖C‖pq. (4)

The norm of the matrix bundle C̃ = {C1, C2, . . . , Cs}, Ck ∈ R
|Jk|×|Jk|, k ∈ Ns

is defined as follows:

‖C̃‖max = max
{
‖Ck‖pq : k ∈ Ns

}
.

Perturbation of the elements of the matrix bundle C̃ is imposed by adding per-
turbing matrix bundle

B̃ = {B1, B2, . . . , Bs},

where Bk ∈ R|Jk|×|Jk| are matrices with rows Bk
i , i ∈ Nn, k ∈ Ns. Thus, the set

of (J1, J2, ..., Js)-efficient outcomes of the perturbed game here and after will be
denoted as G(C̃ + B̃, J1, J2, . . . , Js).

For an arbitrary number ε > 0, we define a bundle of perturbing matrices

Ωn×n(ε) =
{
B̃ ∈

s∏

k=1

R|Jk|×|Jk| : ‖B̃‖max < ε
}
,

where

‖B̃‖max = max
{
‖Bk‖pq : k ∈ Ns

}
.
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Following the terminology [10,12], the strong stability radius (called T1-stability
radius in the terminology of [11,17]) of the game Z(C, J1, J2, . . . , Js) is the number

ρ=ρpq(J1, J2, . . . , Js)=

{
supΞ if Ξ 6= ∅,
0 if Ξ = ∅,

where
Ξ=
{
ε> 0 : ∀B̃ ∈ Ωn×n(ε)

(
G(C̃)∩G(C̃ + B̃) 6=∅

)}
.

Thus, the strong stability radius determines the limit level of additive perturba-
tions of the elements of the matrix C that preserves optimality of at least one (not
necessarily the same) (J1, J2, . . . , Js)-efficient outcome of the original game. It is
obvious, when G(C̃) = X \ G(C̃) is empty, intersection G(C̃)∩G(C̃ + B̃)6=∅ is not
empty for any perturbing matrix B ∈ Ωn×n (ε) and any ε > 0. Therefore the strong
stability radius of the problem is not bounded form above, i.e. ρ = ∞. Otherwise
(G(C̃) 6= ∅) the game Z(C) is called non-trivial. By analogy, the partial |Jk|-criteria
problem Z(Ck), k ∈ Ns, is called non-trivial if P (Ck) 6= XJk

. Thus, according to
(3) game Z(C) is non-trivial if and only if among its partial problems there exists
at least one non-trivial partial problem.

The strong stability radius of the partial problem Z(Ck) is defined as follows:

ρ =

{
supΘ if Θ 6= ∅,
0 if Θ = ∅,

where

Θ = {ε > 0 : ∀Bk ∈ Ω|Jk|×|Jk|(ε) (P (Ck) ∩ P (Ck +Bk) 6= ∅)},

Ω|Jk|×|Jk|(ε) = {Bk ∈ R
|Jk|×|Jk| : ‖Bk‖pq < ε} is the set of perturbing matrices of

problem Z(Ck).
Obviously, ρpq(C

k) = ∞ if problem Z(Ck) is trivial, i.e. P (Ck) = XJk
.

The non-trivial (P (Ck) 6= XJk
) partial problem Z(Ck) is called non-degenerate

if the following formula is valid:

∃z0 6∈ P (Ck) ∃a ∈ R
|Jk| ∀z ∈ P (Ck) (aT (z − z0) < 0). (5)

If the negotiation of the formula is valid, i.e.

∀z 6∈ P (Ck) ∀a ∈ R
|Jk| ∃z0 ∈ P (Ck) (aT (z0 − z) ≥ 0),

the problem Z(Ck) is called degenerate.
It is easy to see that any scalar (|Jk| = 1) non-trivial partial problem Z(Ck) is

non-degenerate.
The non-trivial game Z(C), C ∈ R

n×n, is called non-degenerate if among its
partial problems Z(Ck), k ∈ Ns, there exists at least one non-degenerate problem.
Non-trivial game Z(C) is called degenerate if all its non-trivial partial problems are
degenerate.
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3 Auxiliary statements

In the space of an arbitrary dimension R
k, along with the norm lp, p ∈ [1,∞],

we will use the conjugate norm lp⋆ , where numbers p and p⋆ are connected, as usual,
by the equality

1

p
+

1

p⋆
= 1,

assuming p⋆ = 1 if p = ∞, and p⋆ = ∞ if p = 1. Therefore, we further suppose that
the range of variation of the numbers p and p⋆ is the closed interval [1,∞], and the
numbers themselves are connected by the above conditions.

Further we use the well-known Hölder’s inequality [21]:

|aT b| ≤ ‖a‖p‖b‖p⋆, (6)

that is true for any two vectors a = (a1, a2, . . . , ak)
T ∈ R

k and b = (b1, b2, . . . , bk)
T ∈

R
k.

Directly from (3), similarly to lemma in [7], the following lemma holds.

Lemma 1. The outcome x = (x1, x2, . . . , xn)T ∈ X is (J1, J2, . . . , Js)-efficient, i.e.

x ∈ G(C̃, J1, J2, . . . , Js)

if and only if for any index k ∈ Ns

xJk
∈ P (Ck).

Hereinafter, xJk
is a projection of vector x = (x1, x2, . . . , xn)T on coordinate

axes of X with coalition numbers Jk.
Further we will use the following notation for the set of non-trivial partial prob-

lems of the game Z(C, J1, J2, . . . , Js)

K(C̃) = K(C̃, J1, J2, . . . , Js) = {k ∈ Ns : P (Ck) 6= XJk
}.

It is easy to see that the following properties are valid.

Property 1. The game Z(C, J1, J2, . . . , Js) is non-trivial if and only if the set
K(C̃) is non-empty.

Property 2. The outcome

x0 6∈ G(C̃, J1, J2, . . . , Js)

if and only if there exists an index k ∈ K(C̃) such that

x0
Jk

6∈ P (Ck).

Property 3. If the game Z(C, J1, J2, . . . , Js) is non-trivial, then for any k 6∈
K(C̃) we have

P (Ck) = XJk
.
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Lemma 2. For any non-degenerate partial problem Z(Ck) there exists non-zero
matrix Ĉ ∈ R

|Jk|×|Jk| such that the set P (Ck) ∩ P (Ĉ) is empty.

Proof. According to the definition of the non-degenerate problem Z(Ck) (see (5))
there exist vectors z0 ∈ P (Ck) and a ∈ R

|Jk| such that for each vector z ∈ P (Ck)
the inequality

aT (z − z0) ≤ 0

holds.
Therefore, using matrix Ĉ of size |Jk| × |Jk| with rows

Ĉi =

{
a if i = 1,

0(n) otherwise,

where 0(n) = (0, 0, . . . , 0) ∈ R
|Jk|, for any vector z ∈ P (Ck) we have

z0 ∈ X(z, Ĉ).

In other words, any vector z ∈ P (Ck) satisfies condition z /∈ P (Ĉ). Hence, we
have P (Ck) ∩ P (Ĉ) = ∅.

Lemma 3. The strong stability radius ρ = ρpq(J1, J2, . . . , Js) of the non-degenerate
game Z(C, J1, J2, . . . , Js) does not exceed the positive number a if there exists its
partial non-degenerate problem Z(Cr) with the radius ρpq(C

r) ≤ a.

Proof. It follows from the conditions of the lemma that for any number ε > a there
exists a perturbing non-zero matrix Br = [bij ] ∈ Ω|Jk|×|Jk|(ε) such that

P (Cr) ∩ P (Cr +Br) = ∅.

A perturbing matrix bundle B̃ = {B1, B2, . . . , Bs} is defined by the rule

Bk =

{
Br if k = r,

0|Jk|×|Jk| if k = Ns \ r,

where 0|Jk|×|Jk| is the matrix of size |Jk| × |Jk| consisting of zeros.
Then we have

‖B̃‖max = ‖Br‖pq < ε.

Therefore, the following formula is valid

ε > a ∃B̃ ∈ Ωn×n(ε) (G(C̃) ∩G(C̃ + B̃) = ∅).

Hence, ρpq(J1, J2, . . . , Js) ≤ a.

Hereinafter, a+ is a projection of a vector a = (a1, a2, . . . , an) ∈ R
b on a positive

orthant, i.e.
a+ = [a]+ = (a+

1 , a
+
2 , . . . , a

+
b ),

where + implies positive cut of vector a, i.e.

a+
i = [ai]

+ = max{0, ai}, i ∈ Nn.
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Lemma 4. Let numbers p, q ∈ [1,∞], k ∈ Ns, ϕ and vectors z, z′ ∈ XJk
be such

that condition

‖[Ck(z − z′)]+‖q ≥ ϕ ‖z − z′‖p∗ > 0

holds. Then for any perturbing matrix bundle B̃ = {B1, B2, . . . , Bs} ∈ Ωn×n(ϕ) we
have

z′ 6∈ X(z,Ck +Bk).

Proof. The proof will be given by contradiction. Assume that there exists a perturb-
ing matrix bundle B̃ = {B1, B2, . . . , Bs} ∈ Ωn×n(ϕ) such that z′ ∈ X(z,Ck + Bk).
Then for any index i ∈ Jk we derive

(Ck
i +Bk

i )z ≤ (Ck
i +Bk

i )z′,

and hence

Ck
i (z − z′) ≤ Bk

i (z′ − z).

From the last inequality, we continue

[Ck
i (z − z′)]+ ≤ |Bk

i (z − z′)|.

Taking into account Hölder’s inequality (6), we get

[Ck
i (z − z′)]+ ≤ ‖Bk

i ‖p‖z − z′‖p∗.

Thus, we conclude

‖[Ck
i (z − z′)]+‖q ≤ ‖Bk‖pq‖z − z′‖p∗ ≤ ‖B̃‖max‖z − z′‖p∗ < ϕ‖z − z′‖p∗.

The last inequality contradicts the condition of lemma 4.

For any x0 6∈ G(C̃, J1, J2, . . . , Js), we denote

K(C̃, x0) = {k ∈ K(C̃) : x0
Jk

6∈ P (Ck)}.

Taking into account properties 1 and 2, we conclude that the next lemma is
valid.

Lemma 5. If x0 6∈ G(C̃, J1, J2, . . . , Js), then set K(C̃, x0) is non-empty.

4 Upper bounds of the radius of a partial problem

Theorem 1. For the strong stability radius of the non-degenerate problem Z(Ck), Ck ∈
R
|Jk|×|Jk|, the bound

ρpq(C
k) ≤ ‖Ck‖pq

is valid.
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Proof. Let ε > ‖Ck‖pq. Due to the nondegeneracy of the problem Z(Ck) and Lemma
2 there exists a non-zero matrix Ĉ ∈ R

|Jk|×|Jk| such that

P (Ck) ∩ P (Ĉ) = ∅. (7)

Therefore, using as the perturbing matrix Bk ∈ R
|Jk|×|Jk| the matrix ξĈ − Ck,

where number ξ is defined by the rule

0 < ξ <
ε− ‖Ck‖pq

‖Ĉ‖pq

,

we have

Ck +Bk = ξĈ,

‖Bk‖pq = ‖ξĈ − Ck‖pq ≤ ξ‖Ĉ‖pq + ‖Ck‖pq < ε.

Thus, due to equality (7) we conclude that for any number ε > ‖Ck‖pq there exists
the perturbing matrix Bk ∈ Ω|Jk|×|Jk|(ε) such that P (Ck)∩P (Ck +Bk) = ∅. Hence,
ρpq(C

k) ≤ ‖Ck‖pq.

Theorem 2. The strong stability radius ρpq(C
k) of the degenerate problem Z(Ck),

Ck ∈ R
|Jk|×|Jk|, |Jk| ≥ 2, equals infinity.

Proof. Assume the opposite, that the problem has a finite radius. Then there exists

a non-zero matrix Ĉk ∈ R
|Jk|×|Jk| such that the set P (Ck) ∩ P (Ĉ) is empty. There-

fore, due to the external stability of the Pareto set (see e.g. [18]), for each vector
z ∈ P (Ck) there exists vector z′(z) /∈ P (Ck) such that z′(z) ∈ X(z, Ĉk). Hence,
assuming vector a ∈ R

|Jk| is equal to the sum of the rows of the matrix Ĉk, we
conclude that for each vector z ∈ P (Ck) there exists vector z′(z) /∈ P (Ck) such that
the inequality is true:

aT (z − z′(z)) < 0. (8)

Suppose z0 = z′(z⋆), where z⋆ satisfies the equality

aT z′(z⋆) = max{aT z′(z) : z ∈ P (Ck)}.

Therefore, taking into account inequality (8), we conclude that there exists vector
a ∈ R

|Jk| such that for each vector z ∈ P (Ck) the inequality

aT (z − z0) < 0

is valid, i.e. formula (5) is true, which means that the problem Z(Ck) is non-
degenerate. The contradiction to the degeneracy of the problem proves 2.
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5 Main result

For the non-trivial game Z(C, J1, J2, . . . , Js), C ∈ R
n×n, n ≥ 2, s ∈ Ns, and any

p, q ∈ [1,∞], we define

ϕ = ϕpq(J1, J2, . . . , Js) = max
x∈G(C̃)

min
k∈K(C̃)

min
z 6∈P (Ck)

‖[Ck(xJk
− z)]+‖q

‖xJk
− z‖p∗

,

ψ = ψp(J1, J2, . . . , Js) = min
x/∈G(C̃)

max
k∈K(C̃)

max
z∈P (xJk

,Ck)
min
i∈Jk

Ck
i (z − xJk

)

‖z − xJk
‖p∗

,

‖C̃‖min = min{‖Ck‖pq : k ∈ K̂(C̃)},

K̂(C̃) = K̂(C̃, J1, J2, . . . , Js) = {k ∈ K(C̃) : Z(Ck) is a degenerate problem},

P (xJk
, Ck) = X(xJk

, Ck) ∩ P (Ck).

Theorem 3. For any p, q ∈ [1,∞], C ∈ Rn×n, n ≥ 2 and any partition coalition
(J1, J2, . . . , Js), s ∈ Nn the strong stability radius ρpq(J1, J2, . . . , Js) of the non-
trivial game Z(C, J1, J2, . . . , Js) has the following bounds:

0 < max{ϕ,ψ} ≤ ρpq(J1, J2, . . . , Js)

{
≤ ‖C̃‖min if game Z(C) is non-degenerate (K̂(C̃) 6= ∅),
= ∞ if game Z(C) is degenerate.

Proof. First of all, due to property 1, the set K(C) is non-empty. Since the formula

∀k ∈ K(C̃) ∀x ∈ G(C̃) ∀z 6∈ P (Ck) ∃i ∈ Jk

(
Ck

i (xJk
− z) > 0

)

is true, the inequality ϕ > 0 is valid.
First, we prove the inequality ρ ≥ ϕ. Let B̃ = {B1, B2, . . . , Bs} be the perturbing

matrix bundle that belongs to set Ωn×n(ϕ). To prove inequality ρ ≥ ϕ it is enough
to show the existence of the outcome x⋆ ∈ G(C̃) ∩G(C̃ + B̃).

According to the definition of the positive number ϕ, there exists an outcome
x0 ∈ G(C̃) such that for any k ∈ K(C̃) and z 6∈ P (Ck) the relations (taking into
account Lemma 1) hold

x0
Jk

∈ P (Ck),

‖[Ck(x0
Jk

− z)]+‖q ≥ ϕ‖x0
Jk

− z‖p⋆ > 0.

Therefore, according to Lemma 4 the formula is valid

∀k ∈ K(C̃) ∀z /∈ P (Ck) ∀B̃ ∈ Ωn×n(ϕ)
(
z ∈ X(x0

Jk
, Ck +Bk)

)
, (9)

where B̃ = (B1, B2, . . . , Bs).
Next we indicate the way of choosing the necessary outcome x⋆ ∈ G(C̃)∩G(C̃+

B̃).
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If x0 ∈ G(C̃ + B̃), then assume x⋆ = x0.

Let x0 /∈ G(C̃ + B̃). Then due to Lemma 5 K(C̃ + B̃, x0) 6= ∅. Therefore,

x0
Jk
/∈ P (Ck +Bk), k ∈ K(C̃ + B̃, x0),

x0
Jk

∈ P (Ck +Bk), k /∈ K(C̃ + B̃, x0)

and assume

x∗Jk
= x0

Jk
, k /∈ K(C̃ + B̃, x0). (10)

Next, due to the external stability (see e.g. [18]) for each Pareto set P (Ck +
Bk), k ∈ K(widetildeC + B̃, x0), it is possible to choose vector

x⋆
Jk

∈ P (Ck +Bk), k ∈ K(C̃ + B̃, x0), (11)

such that

x⋆
Jk

∈ X(x0
Jk
, Ck +Bk).

Taking into account the proved formula (9), it is easy to see that

x⋆
Jk

∈ P (Ck), k ∈ K(C̃).

Moreover, according to property 3, for any vector x⋆
Jk

∈ XJk
we have

x⋆
Jk

∈ P (Ck), k /∈ K(C̃).

Thus, according to Lemma 1 x⋆ ∈ G(C̃). In addition, due to (10) and (11) x⋆ ∈
G(C̃ + B̃). Hence x⋆ ∈ G(C̃) ∩ G(C̃ + B̃) for any perturbing matrix bundle B̃ ∈
Ωn×n(ϕ), i.e. ρ ≥ ϕ.

Now we prove inequality ρ ≥ ψ. Assume that ψ > 0 (otherwise the inequality is
evident).

Let a perturbing matrix bundle

B̃ = {B1, B2, . . . , Bs} ∈ Ωn×n(ψ).

Then according to the definition of number ψ for any outcome x /∈ G(C̃) there exist
r ∈ K(C̃) and z0 ∈ P (xJr

, Cr) such that

Cr
i (z0 − xJr

)

‖z0 − xJr
‖p⋆

≥ ψ > ‖B̃‖max ≥ ‖Br‖pq ≥ ‖Br
i ‖p, i ∈ Jr.

Hence, using the Hölder’s inequality (6), we obtain

(Cr
i +Br

i )(z
0 − xJr

) ≥ Cr
i (z0 − xJr

) − ‖Br
i ‖p‖z

0 − xJr
‖p⋆ > 0, i ∈ Jr.

It means that

xJr
/∈ P (Cr +Br).
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Therefore, due to Lemma 1 x /∈ G(C̃ + B̃). Summarizing, we conclude that any
outcome which is not (J1, J2, . . . , Js)-efficient outcome of the game Zn(C) remains
not efficient in any perturbed game Z(C +B). Thus, the relations are valid

∅ 6= G(C̃ + B̃) ⊆ G(C̃).

Hence, G(C̃) ∩G(C̃ + B̃) 6= ∅ for any perturbing matrix bundle B̃ ∈ Ωn×n(ψ), i.e.
ρ ≥ ψ.

Inequality K̂(C̃) 6= ∅ means that the game Z(C, J1, J2, . . . , Js) is non-degenerate.
Therefore upper bound

ρpq(J1, J2, . . . , Js) ≤ ‖C̃‖min

follows from Theorem 1 and Lemma 3.
Finally, we consider the case when the game Z(C, J1, J2, . . . , Js) is degenerate.

We prove by induction on the number s that the strong stability radius equals
infinity.

According to Theorem 2 the strong stability radius of any degenerate partial
problem Z(Ck), k ∈ Ns equals infinity. Therefore, for any matrix Bs ∈ R

|Js|×|Js| the
relation is valid

P (Cs) ∩ P (Cs +Bs) 6= ∅. (12)

Further, by induction, we suppose that ρpq(J1, J2, . . . , Js−1) = ∞. It means that for
any perturbing matrix bundle B̃ = {B1, B2, . . . , Bs−1}, Bk ∈ R

|Js|×|Js|, k ∈ Ns−1,
we have ∏

k∈Ns−1

P (Ck) ∩
∏

k∈Ns−1

(Ck +Bk) 6= ∅. (13)

Now suppose that radius ρpq(J1, J2, . . . , Js) is finite. Then there exists a per-
turbing matrix bundle

{B1, B2, . . . , Bs}, Bk ∈ R
|Js|×|Js|, k ∈ Ns,

such that ∏

k∈Ns

P (Ck) ∩
∏

k∈Ns

(Ck +Bk) = ∅,

which contradicts inequalities (12) and (13). Hence, the strong stability radius of
the degenerate game Z(C, J1, J2, . . . , Js) equals infinity.

Now we focus on the strong stability radius ρpq({1}, {2}, . . . , {n}) of the non-
trivial (K(C̃) 6= ∅) game Z(C, {1}, {2}, . . . , {n}) of finding the Nash set NE(C).

The next corollary follows directly from formula (3).

Corollary 1. An outcome x0 = (x0
1, x

0
2, . . . , x

0
n)T ∈ X of the game with matrix

C ∈ R
n×n is Nash equilibrium, i.e. x0 ∈ NE(C), if and only if the equilibrium

strategy of every player i ∈ Nn is defined as follows

x0
i =





max{xi : xi ∈ Xi} if cii > 0,
min{xi : xi ∈ Xi} if cii < 0,
xi ∈ Xi if cii = 0.
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Therefore, it is obvious that

K(C̃) = K(C̃, {1}, {2}, . . . , {n}) = {k ∈ Ns : ckk 6= 0}.

Since any scalar non-trivial problem is non-degenerate, the game Z(C, {1}, {2}, . . . , {n})
is non-degenerate too. Therefore,

K̂(C̃) = K(C̃) 6= ∅. (14)

Corollary 2. For any p, q ∈ [1,∞], C ∈ R
n×n, n ≥ 2, for the strong stability radius

of the non-trivial (K(C̃) 6= ∅) game Z(C, {1}, {2}, . . . , {n}) of finding the Nash set
NE(C) the formula is valid

ρ⋆ = ρpq({1}, {2}, . . . , {n}) = min{|ckk| : k ∈ K(C̃)}.

Proof. From Theorem 3 we get the following bounds

ϕ⋆ ≤ ρ⋆ ≤ ‖C̃‖min,

where

ϕ⋆ = max
x∈NE(C)

min
k∈K(C̃)

max
z /∈P (ckk)

‖[ckk(xk − z)]+‖q

‖xk − z‖p⋆

,

‖C̃‖min = min{|ckk| : k ∈ K̂(C̃)}. (15)

Therefore, taking into account Corollary 1, for any x ∈ NE(C), k ∈ K(C̃) and
z /∈ P (ckk) the equalities are valid

‖[ckk(xk − z)]+‖q

‖xk − z‖p⋆

=
‖ckk(xk − z)‖q

‖xk − z‖p⋆

= |ckk|.

Hence, due to (14) and (15) we conclude
ρ⋆ = min{|ckk| : k ∈ K(C̃)}.

Note that the strong stability radius formula in Corollary 2 implies the attain-
ability of the lower and upper bounds specified in Theorem 3, for the case of the
game Z(C, {1}, {2}, . . . , {n}) of finding the Nash set NE(C).

Remark. From Theorem 3 it follows that necessary and sufficient condition of
the finite strong stability radius of the game Z(C, J1, J2, . . . , Js) with X 6=
G(C̃, J1, J2, . . . , Js) is the existence of at least one non-degenerate problem among
all its non-trivial partial problems Z(C1), Z(C2), . . . , Z(Cs). But the existence
of the problem Z(Ck), Ck ∈ R

|Jk|, |Jk| ≥ 2, is equivalent to the consistency of the
system of strict linear inequalities

yT (z0 − z) < 0, z ∈ P (Ck),

with unknown vector y for at least one solution z0 /∈ P (Ck). A criterion of the
consistency of the system can be found, for instance, in [20].
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In conclusion, we give an illustrative example that shows existence of the degen-
erate problems Z(C,N2) with condition P (C) 6= X where C ∈ R

2×2.

Example. Let the set of outcomes of two players have the form

x⋆ = (5, 2)T , x1 = (3, 1)T , x2 = (7, 3)T , x3 = (4, 4)T .

Thereby two players have strategies X1 = {3, 4, 5, 7} and X2 = {1, 2, 3, 4} but they
do not use all of them (to simplify the example).

Let payoff matrix has the form

C =

[
−3 −1
1 2

]
.

Then we have

Cx⋆ = (−17, 9)T , Cx1 = (−10, 5)T , Cx2 = (−24, 13)T ,

Cx3 = (−16, 12)T , P (C) = {x1, x2, x3}, x⋆ /∈ P (C),

x⋆ − x1 = x2 − x⋆

It is evident that the problem is degenerate and according to theorem 2 its strong
stability radius equals infinity.
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