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On semigroups of endomorphisms of universal algebras

Mitrofan M. Choban and Ion I. Valuţă

Abstract. In the present article the left ideals of the semigroup of endomorphisms
End(G) of a universal algebra G are studied. The lattice Specs(G) of saturated
left ideals and the lattice Specf (G) of full ideals of the semigroup of endomorphisms
End(G) of a universal algebra G are introduced and characterized (Theorem 2, Corol-
laries 7 and 8). In a free universal algebra any left ideal is a full left ideal. Theorem
1 describes the cyclic universal algebras. Theorem 3 affirms that any semigroup with
unity is isomorphic to a semigroup of endomorphisms End(G) of some cyclic free
universal algebra G.
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1 Introduction

Let N = {1, 2, ...} be the set of natural numbers and n ∈ ω = {0, 1, 2, ...}.
The n-ary Cartesian power of a set X is denoted by Xn. If the set X is empty,
then the set Xn is empty too. If the set X is non-empty, then the set X0 is a
singleton. The discrete sum Ω = ⊕{Ωn : n ∈ ω = {0, 1, 2, ...}} of the pairwise
disjoint discrete spaces {Ωn : n ∈ ω} is called a signature. A topological Ω-algebra
or a topological universal algebra of the signature Ω is a family {G, enG : n ∈ ω},
where G is a non-empty topological space and enG : Ωn ×Gn → G is a continuous
mapping for each n ∈ ω. The concept of universal algebra was created by Alfred
North Whitehead in 1898 as a generalization of Boole’s logical algebras. The term
universal algebra was proposed by James Joseph Sylvester [28]. Between 1935 and
1950 important works were published by Garrett Birkhoff, in which he introduced
the notions of variety, quasi-variety, free algebra, congruences and proved some
homomorphism theorems [1–3]. After 1950, due to applications in mathematical
logic, model theory, geometric algebras, theoretical and computer physics, the theory
of universal algebras began to develop fruitfully [2,3,10,11,22,27]. As in [23–27] we
continue the study of semigroups of endomorphisms of universal topological algebras.

Let A, B and C be three universal algebras of signature Ω. The function
f : A −→ B is called a morphism or homomorphism if f(u(x)) = u(fn(x)) for any
n ∈ ω, any u ∈ Ωn and any element x = (x1, x2, ..., xn) ∈ Gn, where
fn(x) = (f(x1), f(x2), ..., f(xn)). The composition of the functions f : A −→ B
and g : B −→ C is the function h = f · g: A −→ C, where h(x) = g(f(x)) for any
x ∈ A. The composition of two morphisms is always a morphism. A morphism that
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is a bijective function is called an isomorphism. If an isomorphism can be estab-
lished between two universal algebras, they are called isomorphic. Two isomorphic
universal algebras are identified. Morphisms, respectively isomorphisms, between a
universal algebra and itself are called endomorphisms, respectively automorphisms.

Subalgebras and Cartesian products of topological Ω-algebras are defined in tra-
ditional way [1–6,9, 13,27,28].

Let G be a topological space and n ∈ N. A continuous mapping λ : Gn → G is
called an n-ary operation on G.

If G is a topological Ω-algebra and u ∈ Ωn, then u : Gn → G, where
u(x) = enG(u, x) for every x ∈ Gn, is an n-ary operation on G.

For any topological universal algebra G denote by Sub(G) the set of all subalge-
bras of G and by Subc(G) we denote the set of all closed subalgebras of the algebra
G. Relative to the operation of inclusion, Sub(G) and Subc(G) are ordered sets with
the maximal element G and the minimal element ∅. Hence ∩Sub(G) and ∩Subc(G)
are subalgebras of G. Algebra G and ∅ are considered as improper subalgebras of G.
Therefore ∅ is not a universal algebra which is a subalgebra of any universal algebra.

Any subset A ⊆ G generates the subalgebra sG(A) = ∩{H ∈ Sub(G) : A ⊆ H}.

Definition 1. A nonempty set L together with two binary operations ∨ and ∧ on
L is called a lattice if it satisfies the following identities:

L1: (a) x ∨ y = y ∨ x; (b) x ∧ y = y ∧ x (commutative laws).
L2: (a) x ∨ (y ∨ z) = (x ∨ y) ∨ z; (b) x ∧ (y ∧ z) = (x ∧ y) ∧ z (associative laws).
L3: (a) x ∨ x = x; (b) x ∧ x = x (idempotent laws).
L4: (a) x = x ∨ (x ∧ y); (b) x = x ∧ (x ∨ y) (absorption laws).

If L is a lattice, then define the order ≤ on L by a ≤ b if and only if a = a ∧ b.
For any non-empty subset A of the ordered set L the supremum c = ∨A = supA

is an element of L with the properties: x ≤ c for any x ∈ A; if b ∈ L and x ≤ b for
any x ∈ A, then c ≤ b. Similarly the infimum ∧A = infA of A in L is defined.

An ordered set L is a lattice if and only if for every a, b ∈ L both a∨b = sup{a, b}
and a ∧ b = inf{a, b} exist in L.

A mapping f : A −→ B of an ordered set A into an ordered set B is an order
homomorphism if x, y ∈ A and x ≤ y implies f(x) ≤ f(y).

Remark 1. The ordered sets Sub(G) and Subc(G) are complete lattices.
If A,B ∈ Subc(G), then inf{A,B} = A∩B and the infimum is the same in lattices
Sub(G) and Subc(G). In general, the supremum sup{A,B} is not obligatorily the
same in lattices Sub(G) and Subc(G). The mapping clG : Sub(G) −→ Subc(G),
where ℑclGA = clGA is the closure of the set A in the space G, is an order homo-
morphism of the lattice Sub(G) onto the lattice Subc(G).

Example 1. Let G be the semigroup of all rational numbers with the binary opera-
tion {+}. Let A be the subsemigroup of G generated by the set {n+2−n−3 : n ∈ N}
and B be the subsemigroup of G generated by the set {−n − 3−n−3 : n ∈ N}. The
sets G0 = {0}, G+ = {x ∈ A : x > 0} and G− = {x ∈ A : x < 0} are subsemigroups
of G.
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For any two subsemigroups P,Q ∈ Sub(G) of the semigroup G we have
P ∪ Q ⊆ sup{P,Q} ⊆ sup{clGP, clGQ} ⊆ clG(sup{P,Q}) ⊆ clG(sup{P,Q}) =
clG(sup{clGP, clGQ}) and P ∩Q = inf{P,Q} ⊆ inf{clGP, clGQ} = cclGP ∩ clGQ.

The sets A and B are closed in G and the set C = {x+ y : x ∈ A, y ∈ B} is not
a closed subsemigroup of G. In Sub(G) we have the supremum sup{A,B} = C and
in Subc(C) we have C ⊂ sup{A,B} = clGC 6= C. Hence Subc(G) is not a sublattice
of the lattice Sub(G).

The sets G+ and G− are not closed in G,
∅ = G+ ∩G− = inf{G+, G−} ⊆ G0 = inf{clGG

+, cl−G} = clGG
+ ∩ cl−G.

Hence the mapping clG : Sub(G) −→ Subc(G) is an order homomorphism and is not
a lattice homomorphism of the lattice Sub(G) onto the lattice Subc(G).

2 Ideals and spectral spaces of algebras

The spectrum of a non-empty set X, denoted Exp(X), is the set of the all subsets
of X, equipped with the Zariski topology, for which the base of closed sets are the
sets

V (A) = {P ∈ Exp(X) : A ⊆ P}, A ∈ Exp(X).

Let G be a topological universal algebra of the signature Ω, n ≥ 2, 1 ≤ i ≤ n ∈ N

and u ∈ Ωn. The universal algebra G is (u, i)-divisible if for any elements
a1, a2, ..., ai, ..., an ∈ G the equation u(a1, ..., ai−1, x, ai+1, ..., an) = ai has some solu-
tion in G. A subset A ⊆ G is called a (u, i)-ideal of the algebra G if A ∈ Sub(G) and
u(a1, ..., ai−1, x, ai+1, ..., an) ∈ A for all x ∈ G and a1, ..., ai−1, ai+1, ..., an ∈ A. The
empty set ∅ is considered a (u, i)-ideal. If the algebra G is (u, i)-divisible, then G
has not proper (u, i)-ideals. The (u, 1)-ideal is called a left u-ideal and a (u, n)-ideal
is called a right u-ideal. If A is a (u, i)-ideal for any i ≤ n, then A is a u-ideal, or
a bilateral u-ideal for n = 2. Denote by Spec(G,u, i) the set of all (u, i)-ideals and
by Specc(G,u, i) the set of all closed (u, i)-ideals of the topological universal algebra
G. The sets Spec(G,u, i) and Specc(G,u, i) are complete lattices and the mapping
clG : Spec(G,u, i) −→ Specc(G,u, i) is a homomorphism of the lattice Spec(G,u, i)
onto Specc(G,u, i). The algebraical proprieties describe the arithmetic properties,
and the properties of the topological spaces Spec(G,u, j), Specc(G,u) describe the
geometric properties of the universal algebra G.

Let S be a multiplication semigroup. A non-empty subset A of S is called a left
(respectively right) ideal of S if S ·A ⊆ A (respectively A · S ⊆ A).

3 Order proprieties of spaces of ideals

Let G be a topological universal algebra of the signature Ω. The set End(G)
of all endomorphisms of universal algebra G and the set Endc(G) of all continu-
ous endomorphisms of universal algebra G with binary composition operation are
called the semigroups of endomorphisms and continuous endomorphisms, in which
the identical automorphism is their unity. The semigroups End(G) and Endc(G)
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are powerful and convenient tools in the study of algebra G. Thus the theory of
semigroups [6–8,10,13,18–20,22] can be applied in the study of universal algebras.

From [4,5, 5, 6, 12,13,19] it follows that the following definitions are correct.

Definition 2. Let Ω be a fixed signature. A universal algebra G is a free universal
algebra in some class of universal algebras if there is given a subset I = IG ⊂ G
with the properties:

1) the algebra G is generated by the set I, i.e. G= sG(I), and I is called the
space of generators of G;

2) for any mapping f : I −→ G there exists a (unique) endomorphism
f̂ : G −→ G such that f(x) = f̂(x) for each x ∈ I.

Definition 3. Let Ω be a fixed signature. A topological universal algebra G is a
topological free universal algebra in some class of universal algebras if there is given
a subspace I = IG ⊂ G with the properties:

1) the algebra G is generated by the set I, i.e. G= sG(I), and I is called the
space of generators of G;

2) for any continuous mapping f : I −→ G there exists a (unique) continuous
endomorphism f̂ : G −→ G such that f(x) = f̂(x) for each x ∈ I.

Definition 4. Let Ω be a fixed signature. A topological free universal algebra G is
almost discrete if the space of generators IG is a discrete subspace of the space G.

Since any mapping of a discrete space is continuous, each almost discrete topo-
logical free universal algebra G is a free universal algebra G. Moreover,
End(G) = Endc(G) for any almost discrete topological free universal algebra G.

Lemma 1. Let G be a topological universal algebra of the signature Ω and M be a
subset of G. Then:

1. The set Endc(G)M = {ϕ ∈ Endc(G) : ϕ(G) ⊆ M} is a left ideal of the
semigroup Endc(G).

2. The set End(G)M = {ϕ ∈ End(G) : ϕ(G) ⊆ M} is a left ideal of the
semigroup End(G).

Proof. If ϕ,ψ ∈ End(G) and ϕ(G) ⊆ M , then (ψ · ϕ)(G) = ϕ(ψ(G)) ⊆ ϕ(G) ⊆ M .
The proof is complete.

Definition 5. Let G be a topological universal algebra of the fixed signature Ω.
The left ideal End(G)M is called a G-saturated ideal of the semigroup End(G) and
the ideal Endc(G)M is called a topologically G-saturated ideal of the semigroup
Endc(G).

Denote by Specs(S) the family of all G-saturated ideals of End(G) and by
Specsc(S) the family of all topologically G-saturated ideals of Endc(G) and End(G).

Remark 2. Let {Mγ : γ ∈ Γ} be a family of subsets of a universal algebra G. Then
∪{End(G)Mγ : γ ∈ Γ} ⊆ End(G)∪{Mγ :γ∈Γ} and
∪{Endc(G)Mγ : γ ∈ Γ} ⊆ Endc(G)∪{Mγ :γ∈Γ}.
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Definition 6. A universal algebra A is called:
– simple if and only if every homomorphism with domain A is either injective or

constant;
– weakly simple if every homomorphism f : A −→ A is either surjective or

constant;
– cyclic if there exists a point a ∈ G such that the set {a} generates the algebra

G.

Any topological free cyclic universal algebra is almost discrete.
The Abelian group of integers Zp = Z/pZ modulo p, where Z is the group of

integers with the addition operation + and p is a prime number, is a simple and
cyclic free group. Distinct examples of simple universal algebras are constructed
in [16,17].

Example 2. Let G= Ω = Ω1 = {z = (x, y) : x, y ∈ R, x2+y2 = 1}. If u = (v,w) ∈ Ω
and z = (x, y) ∈ G, then u(z) = (vx−wy, vy +wx). Then G is a cyclic and weakly
simple universal algebra. The algebra G is not simple. Any element a ∈ G generates
G.

Example 3. Let T = {z = (x, y) : x, y ∈ R, x2 + y2 = 1}, with the multiplication
binary operation u · z = (vx−wy, vy +wx) for all u = (v,w), z = (x, y) ∈ T, be the
multiplicative circle group of all complex numbers with absolute value 1, that is, the
unit circle in the complex plane. Then T is a weakly simple topological group and
is not a simple topological group.

Proposition 1. Let G be a weakly simple universal algebra. Then for any family
{Mγ : γ ∈ Γ} of subsets of the algebra G it holds that either G = ∪{Mγ : γ ∈ Γ} or
∪{End(G)Mγ : γ ∈ Γ} = End(G)∪{Mγ :γ∈Γ} and
∪{Endc(G)Mγ : γ ∈ Γ} = Endc(G)∪{Mγ :γ∈Γ}.

Proof. Assume that G 6= ∪{Mγ : γ ∈ Γ} and ϕ ∈ End(G)∪{Mγ :γ∈Γ}. Since
ϕ(G) ⊆ ∪{Mγ : γ ∈ Γ} 6= G, the mapping ϕ is constant. Assume that b ∈ ϕ(G).
There exists γ ∈ Γ such that b ∈Mγ . Then ϕ(G) = {b} ⊆ Mγ and ϕ ∈ End(G)Mγ .
The proof is complete.

The subset M of the algebra G is called the a(σ)-subset if M is a union of
subalgebras of the algebra G.

Proposition 2. Let G be a universal algebra. The family Suba(σ)(G) of all a(σ)-
subsets of the algebra G is a complete sublattice of the lattice Exp(G) of all subsets
of G.

Proof. For any element a ∈ G denote by Ca the cyclic subalgebra generated by
the element a. A subset M of G is an a(σ)-subset if and only if Ca ⊆ M for any
element a ∈ M . Hence for any family {Mγ : γ ∈ Γ} of a(σ)-subsets of G the sets
∪{Mγ : γ ∈ Γ} = ∪{Ca : a ∈ ∪{Mγ : γ ∈ Γ}} and
∩{Mγ : γ ∈ Γ} = ∪{Ca : a ∈ ∩{Mγ : γ ∈ Γ}} are a(σ)-subsets of G. The proof is
complete.
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The subset M of the algebra G is called the e(σ)-subset if
M = ∪{ϕ(G) : ϕ ∈ H} for some subset H ⊆ End(G). The subset M of the algebra
G is called the ec(σ)-subset if M = ∪{ϕ(G) : ϕ ∈ H} for some subset H ⊆ Endc(G).
We have Subec(σ)(G) ⊆ Sube(σ)(G) ⊆ Suba(σ)(G).

Theorem 1. Let G be a universal algebra. The following assertions are equivalent:

1. G is a cyclic universal algebra.

2. ∪{End(G)Mγ : γ ∈ Γ} = End(G)∪{Mγ :γ∈Γ} for any family of a(σ)-subsets
{Mγ : γ ∈ Γ} ⊆ Suba(σ)(G).

Proof. Let G be a cyclic universal algebra with the generator element b ∈ G and
{Mγ : γ ∈ Γ} be a family of a(σ)-subsets of G. Assume that ϕ ∈ End(G) and
ϕ(G) ⊆ ∪{Mγ : γ ∈ Γ}. There exists γ ∈ Γ such that ϕ(b) ∈ Mγ . Since Mγ is
an a(σ)-subset of G, there exists a subalgebra H of G such that ϕ(b) ∈ H ⊆ Mγ .
Then the subalgebra B of G generated by the point ϕ(b) is a subalgebra of the
algebra H. Since the algebra G is generated by the element b, the subalgebra ϕ(G)
is a cyclic algebra generated by the point ϕ(b). Hence ϕ(G) = B ⊆ H ⊆ Mγ and
ϕ ∈ End(G)Mγ . Therefore End(G)∪{Mγ :γ∈Γ} ⊆ ∪{End(G)Mγ : γ ∈ Γ}. By virtue of
Remark 2, ∪{End(G)Mγ : γ ∈ Γ} = End(G)∪{Mγ :γ∈Γ}. Implication 1 → 2 is proved.

Let G be a non-cyclic universal algebra. The point a ∈ G generates the cyclic
subalgebra Ca of G. Then {Ca : a ∈ G} is a family of cyclic subalgebras of algebra
G and G = ∪{Ca : a ∈ G} . Let ψ : G −→ G be the identical endomorphism. Since
G is not a cyclic universal algebra, Ca 6= G and ψ 6∈ End(G)Ca for any a ∈ G. Hence
ψ 6∈ ∪{End(G)Mγ : γ ∈ Γ} and ψ ∈ EndG = End(G)∪{Mγ :γ∈Γ}. Implication 2 → 1
is proved. The proof is complete.

Lemma 2. Let G be a free universal algebra with the space of generators I. Then
Sube(σ)(G) = Suba(σ)(G).

Proof. Fix a point a ∈ G. Then there exits a unique endomorphism ϕa : G −→ G
such that ϕa(x) = a for any x ∈ I. Since the algebra G is generated by the set
I, the subalgebra Ca = ϕa(G) is generated by the set ϕa(I) = {a} and Ca is a
cyclic subalgebra. If H is a subalgebra of the algebra G, then H = ∪{Ca : a ∈ H}.
Therefore, if M is an a(σ)-subset of G, then
M = ∪{Ca : a ∈M} = ∪{ϕa(G) : a ∈M} and M is an e(σ)-set of G. The proof is
complete.

Corollary 1. (Theorem [27], p.79). Let G be a free universal algebra. The following
assertions are equivalent:

1. G is a cyclic universal algebra.

2. ∪{End(G)Mγ : γ ∈ Γ} = End(G)∪{Mγ :γ∈Γ} for any family of e(σ)-subsets
{Mγ : γ ∈ Γ} ⊆ Sube(σ)(G).

Lemma 3. Let G be a free topological universal algebra with the space of generators
I. Then Subec(σ)(G) = Suba(σ)(G).
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Proof. Fix a point a ∈ G. Then there exits a unique continuous endomorphism
ϕa : G −→ G such that ϕa(x) = a for any x ∈ I. Since the algebra G is generated
by the set I, the subalgebra Ca = ϕa(G) is generated by the set ϕa(I) = {a} and
Ca is a cyclic subalgebra. If H is a subalgebra of the algebra G, then
H = ∪{Ca : a ∈ H}. Therefore, if M is an a(σ)-subset of G, then
M = ∪{Ca : a ∈ M} = ∪{ϕa(G) : a ∈ M} and M is an ec(σ)-set of G. The proof
is complete.

Corollary 2. Let G be a free topological universal algebra. The following assertions
are equivalent:

1. G is a cyclic universal algebra.

2. ∪{Endc(G)Mγ : γ ∈ Γ} = Endc(G)∪{Mγ :γ∈Γ} for any family of ec(σ)-subsets
{Mγ : γ ∈ Γ} ⊆ Subec(σ)(G).

Corollary 3. Let G be a free topological universal algebra. The family Sube(σ)(G)
of all e(σ)-subsets and the family Subec(σ)(G) of all ec(σ)-subsets of the algebra G
are complete sublattices of the lattice Exp(G) of all subsets of G.

Theorem 2. Let G be a topological universal algebra. Then Specsc(G) and
Subec(σ)(G) are isomorphic complete lattices.

Proof. Let ΛG(M) = Endc(G)M = {ϕ ∈ Endc(G) : ϕ(G) ⊆ M}. The mapping
ΛG : Subec(σ)(G) −→ Specsc(G) is defined correctly.

Property 1. If M,N are ec(σ)-subsets of G, then N ⊆ M if and only if
Endc(G)N ⊆ Endc(G)M .

Obviously, from N ⊆ M it follows that Endc(G)N ⊆ Endc(G)M . Assume that
Endc(G)N ⊆ Endc(G)M . If a ∈ N \M , then there exists ϕ ∈ Endc(G)N such that
a ∈ ϕ(G) ⊆ N . Then ϕ ∈ Endc(G)N \ Endc(G)M , a contradiction. Property 1 is
proved.

Property 2. If M,N are ec(σ)-subsets of G and N 6= M , then
Endc(G)N 6= Endc(G)M .

If a ∈ N \M , then there exists ϕ ∈ Endc(G)N such that a ∈ ϕ(G) ⊆ N . Then
ϕ ∈ Endc(G)N \ Endc(G)M and Endc(G)N 6= Endc(G)M . Property 2 is proved.

From Properties 1 and 2 it follows that ΛG is an order isomorphism. The proof
is complete.

Corollary 4. Let G be a universal algebra. Then Specs(G) and Sube(σ)(G) are
isomorphic complete lattices.

The following assertion was proved in [23,24,27].

Corollary 5. Let G be a free universal algebra. Then Specs(G), Suba(σ)(G) and
Sube(σ)(G) are isomorphic complete lattices.

Corollary 6. Let G be a free topological universal algebra. Then Specs(G),
Specsc(G), Suba(σ)(G), Sube(σ)(G) and Subec(σ)(G) are isomorphic complete lattices.
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Example 4. Let G1 and G2 be two non-trivial multiplicative groups, e1 be the
neutral element of G1, e2 be the neutral element of G2 and G = G1 ∪ G2. On G
consider binary operation {·} such that:

– {·} is group multiplication on Gi for any i ∈ {1, 2};

– if x ∈ G1 and y ∈ G2, then x · y = y and y · x = x;

We put Ω = Ω2 = {·}. Then G is a universal algebra of the signature Ω. By
construction, G is a groupoid and is not a semigroup: the multiplication on G is not
associative. Instantly, if x ∈ G1 and y, z ∈ G2, then y · (x · z) = y · z and
(y · x) · z = x · z = z. Let Sub(G1) be the family of all subsemigroups of G1 and
Sub(G2) be the family of all subsemigroups of G2. If H1 is a subsemigroup of G1

and H2 is a subsemigroup of G2, then H1, H2 and H1 ∪H2 are subalgebras of the
algebra G of signature Ω. In particular, {e1}, {e2} and {e1, e2} are subalgebras of
G and homomorphic images of G. Hence
Sub(G) = sub(G1) ∪ Sub(G2) ∪ {H1 ∪H2 : H1 ∈ Sub(G1),H2 ∈ Sub(G2).

Consider an endomorphism ψ : G −→ G.

Property 1. If ψ(e1) ∈ G1, then ψ(G1) ⊆ G1.

Assume that x ∈ G1 and ψ(x) ∈ G2. Then
ψ(x) = ψ(x · e1) = ψ(x) · ψ(e1) = ψ(e1), a contradiction.

Property 2. If ψ(e1) ∈ G2, then ψ(G1) ⊆ G2.

Assume that x ∈ G1 and ψ(x) ∈ G1. Then
ψ(x) = ψ(x · e1) = ψ(x) · ψ(e1) = ψ(e1), a contradiction.

Hence, we have the following four cases:

Case 1. ψ(G) ⊆ G1.

Fix x ∈ G1 and y ∈ G2. Since x · y = y, we have ψ(y)= ψ(x · y) = ψ(x) · ψ(y)
and ψ(x) = e1. Since y ·x = x, we have ψ(x)= ψ(y ·x) = ψ(y) ·ψ(x) and ψ(y) = e1.
Hence ψ(G) = {e1}.

Case 2. ψ(G) ⊆ G2.

In this case ψ(G) = {e2}.

Case 3. ψ(G1) ⊆ G1 and ψ(G2) ⊆ G2.

The identical endomorphism is one of these endomorphisms. In this case
ψ1 = ψ|G1 : G1 −→ G1 and ψ2 = ψ|G2 : G2 −→ G2 are semigroup endomorphisms.

Case 4. ψ(G1) ⊆ G2 and ψ(G2) ⊆ G1.

In this case ψ1 = ψ|G1 : G1 −→ G2 and ψ2 = ψ|G2 : G2 −→ G1 are semigroup
endomorphisms.

Conclusion 1. G1, G2 and their non-trivial subsemigroups are subalgebras and
are not e(σ)-subsets of the universal algebra G.

Conclusion 2. {e1}, {e2} and {e1, e2} are subalgebras and e(σ)-subsets of the
universal algebra G and End(G){e1} ∪ End(G){e2} 6= End(G){e1,e2}.

Conclusion 3. If G1 and G2 are cyclic groups, then G is a bicyclic groupoid.

Example 5. Let (A, ∗) be a non-trivial cyclic group with the neutral element e and
generator element a, n ≥ 2, B = {1, 2, ..., n}, (A×B) ∩ {ε, β} = ∅, ε 6= β and
G = (A×{1, 2, ..., n}) ∪ {ε, β}. We put µ(n− 1) = n and µ(i) = i+ 1 for i ≤ n− 1.
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On B consider the binary operation {⊙}, where i⊙ i = i and i⊙ j = 1 + |i− j| for
i, j ∈ B and i 6= j.

Now on G consider the binary operation {·} such that:
– ε · x = x · ε = x for each x ∈ G;
– if x, y ∈ A and i, j ∈ B, then (x, i) · (y, j) = 9x ∗ y, i⊙ j);
– β · β = (a, 1) and β · (x, i) = (x, i) · β = (x, µ(i)) for each (x, i) ∈ A×B.
We put Ω = Ω0 ∪ Ω2, Ω0 = {ε} and Ω2 = {·}. Then G is a universal algebra of

the signature Ω. By construction, G is a cyclic groupoid with the unity ε, generator
element β and G is not a semigroup.

Let Sub(A) be the family of all subsemigroups of A, C ⊆ B C ⊙ C ⊆ C 6= ∅.
Then (H × C) ∪ {ε} is a subalgebra of G.

Consider an endomorphism ψ : G −→ G.
Property 1. If ψ(β) = (e, i), then ψ(A×B) = {(e, i)}.
Property 2. If ψ(β) = (c, i) ∈ A× {i}, then ψ(A×B) ⊆ A× {i} and

ϕ(a, j) = (c2+j , i) for any j ∈ B.

4 The semigroup of endomorphisms

G. Gratzer and E. T. Schmidt [14] proved that any complete lattice is isomorphic
to the lattice of congruence of some universal algebra. The semigroup End(G) of
all endomorphisms and the semigroup Endc(G) of all continuous endomorphisms of
a topological universal algebra G are semigroups with unity. In [21] A. I. Mal’cev
described the structure of a symmetrical groupoid (semigroup of all transformations
of a set).

The following theorem is a generalization and conceptualization of a theorem
from ([27], p. 98).

Theorem 3. For any semigroup with unity S there exist a signature Ω and a uni-
versal algebra GS of signature Ω such that:

1. The semigroups S and End(GS) are isomorphic.
2. GS is a free cyclic universal algebra of signature Ω.
3. Ω = Ω1 and there exists a bijection u : S −→ Ω such that u(x) = ux and

ux · uy = uy·x for any x, y ∈ S. In particular, relative to operation of composition
the signature Ω is a semigroup anti-isomorphic with the semigroup S.

Proof. Let e be the unity of S. We put GS = S and Ω = Ω1 = {ua : a ∈ S}. For
any a ∈ S, ua ∈ Ω1 and any x ∈ GS = S we put ua(x) = a · x. If a, b ∈ S, then
(ua · ub)(x) = ub(ua(x)) = (b · a) · x = ub·a(x). Hence, if u(a) = ua for any a ∈ S,
then u : S −→ Ω is a bijection and u(a · b) = ub · ua for all a, b ∈ S. Therefore
u : S −→ Ω is an anti-isomorphism.

For any ua ∈ Ω we have ua(e) = a and ue(a) = a. Hence the universal algebra
GS is generated by the element e and GS is a cyclic algebra.

For any a ∈ S consider the function ϕa : GS −→ GS , where ϕa(x) = x · a for
any x ∈ GS = S. We have ϕa(ub(x)) = (b · x) · a = b · (x · a) = ub(ϕa(x)) for any
x ∈ GS . Therefore ϕa ∈ End(GS). Since GS is a cyclic universal algebra, ϕa is the
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unique endomorphism of GS for which ϕa(e) = a. Moreover if ϕ : GS −→ GS is
an endomorphism, then ϕ = ϕϕ(e). Hence GS is a free cyclic universal algebra of
signature Ω and End(GS) = {ϕa : a ∈ S}.

Consider the correspondence ψ : S −→ End(GS), where ψ(a) = ϕa for each
a ∈ S. We have (ϕa ·ϕb)(x) = ϕb(ϕa(x)) = (x ·a) · b = x · (a · b) = ϕa·b(x). Therefore
ψ(a · b) = ϕa·b = ϕa ·ϕb = ψ(a) ·ψ(b) and ψ is an isomorphism of the semigroups S
and End(GS). The proof is complete.

We say that two universal algebras are H-equivalent if their semigroups of en-
domorphisms are isomorphic. In this case, any universal algebra has its imprints in
the group of endomorphisms. One of these imprints are saturated ideals. Saturated
ideal is not an intrinsic conception of theory of semigroups.

Remark 3. In ([27], p. 98) it was proved that ”a semigroup S is isomorphic with the
semigroup End(GS) of endomorphisms of some free universal algebra GS of some
signature Ω if and only if S contains a right ideal F and a non-empty subset E ⊆ F
with the following properties:

(1) if x, y ∈ S and ex = ey for each e ∈ E, then x = y;

(2) for any mapping ϕ : E −→ F there exists some element s ∈ S such that
ϕ(e) = es for any e ∈ ♯

In these conditions GS = F , E is the set of generators of the algebra G and the
right translations F · s, s ∈ S, are endomorphisms of the algebra G.”

In any semigroup S with unity 1 the ideal F = S and the set E = {1} are the
desired objects. Therefore Theorem 3 is a more concrete formulation of the above
Theorem from [27]. Moreover the content and proof of Theorem 3 are simpler, more
transparent and present an effective method of construction of the algebra GS .

5 Lattice of left ideals

For any set X we determine the lattice Exp1(X) = Exp(X) of all subsets of
X, the lattice Exp2(X) = Exp1(Exp1(X)) of all subsets of Exp1(X)X and, by
induction, the lattice Expn(X) = Exp1(Expn−1(X)) of all subsets of Expn−1(X)X.

We consider that the structure of a lattice L is determined if we determine a set
X, a natural number n and a lattice E as the ordered subset of Expn(X) such that
the lattices L and E are isomorphic.

From this point of view, the structure of lattices Specsc(G) and Specs(G) were
determined.

For any element a of a semigroup S with unity denote by Sa the principal left
ideal generated by a. One of the Green’s [15] relations is the relation λS defined by:
aλSb if and only if Sa = Sb. This relation leads us to solve the following equation
x · a = b in the semigroup of endomorphisms of any universal algebra.

We put a ≺S b if and only if Sa ⊆ Sb. Obviously, aλSb if and only if a ≺S b and
b ≺S b.

Fix a signature Ω and a non-trivial universal algebra G of signature Ω. We put
SubE(G) = {ϕ(G) : ϕ ∈ End(G)}. It is obvious that SubE(G) ⊆ Sub(G). The
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set SubE(G) is ordered. The subset L ⊆ SubE(G) is called an E-set. The E-set
L ⊆ SubE(G) is a hereditary E-set if from A ∈ L, B ∈ SubE(G) and B ⊆ A follows
B ∈ L. The improper families EndE(G) and ∅ are full hereditary E-sets. The
intersection of hereditary E-sets is a hereditary E-set. Therefore the family Q(G) ·ϕ
of all hereditary E-sets is a complete lattice. We have Q(G) ⊂ Exp(SubE(G)) ⊆
Exp2(G).

Remark 4. For any subset L ⊆ SubE(G) of E-sets there exists a unique minimal
hereditary E-set E such that L ⊆ E(L). We have
E(L) = ∪{{H ∈ SubE(G) : H ⊆ L} : L ∈ L}. We say that the family E(L) is
generated by the family L.

The family End(G)·ϕ = {ψ ·ϕ : ψ ∈ End(G)} is the principal left ideal generated
by the endomorphism ϕ ∈ End(G).

A left ideal A of End(G) is called a full left ideal if for any f ∈ A and any E-set
B with H ⊆ f(G) there exists g ∈ A such that g(G) = B.

Denote by Specf (End(G), l) the set of all full left ideals of the semigroup End(G).
The intersection of full left ideals is a full left ideal and Specf (End(G), l) is a com-
plete lattice of ideals.

Remark 5. Any saturated ideal is a full left ideal.

For any subset H ⊆ End(G) we put Φ(H) = E({g(G) : g ∈ H}).

Lemma 4. Let H ⊆ End(G). The following assertions are equivalent:

1. H is a full left ideal of End(G).

2. Φ(H) is a hereditary family of E-sets.

Proof. Follows from the definitions of a full left ideal and a hereditary family of
E-sets.

Lemma 5. The mapping Φ : Spec(End(G), l) −→ Q(G) is an order morphism of
the lattice Spec(End(G), l) of left ideals onto a lattice Q(G). Moreover:

1. If A is a full left ideal, B is a left ideal of the semigroup End(G) and B\A 6= ∅,
then Φ(A) 6= Φ(B).

2. Q(G) = Φ(Specf (End(G), i)).

Proof. By construction, Φ is a well defined mapping. It is obvious that Φ preserves
the order: if A,B ∈ Spec(End(G), l) and A ⊆ B, then Φ(A) ⊆ Φ(B). Hence Φ is
an order morphism.

Let A ∈ Specf (End(G), l), B ∈ Spec(End(G), l) and g ∈ B \A, then
g(G) ∈ Φ(B) \ Φ(A) and Φ(B) 6= Φ(A). Assertion 1 is proved.

Let L ∈ Q(G) and L = {f ∈ End(G) : f(G) ∈ L}. If f ∈ L and g ∈ End(L),
then (g · f)(G) = f(g(G)) ⊆ f(G) and g · f ∈ L. Hence L is a full left ideal and
Φ(L) = L. Assertion 2 is proved.

Corollary 7. Let G be a topological universal algebra. The lattices Q(G) and
Specf (End(G), l) are isomorphic.
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The assertion 1 of the following proposition was proved in [24,27].

Proposition 3. Let G be a free topological universal algebra with the set of gener-
ators I. Fix ϕ,ψ ∈ End(G). Then:

1. The equation ξ · ϕ = ψ has solution in End(G) if and only if ψ(G) ⊆ ϕ(G).

2. The set of solutions of the equation ξ · ϕ = ψ has the cardinality of the set
Π{ϕ−1(ψ(i)) : i ∈ I}.

Proof. If h ∈ End(G) is a solution of the equation ξ · ϕ = ψ, then h · ϕ = ψ and
ψ(G) = (h · ϕ)(G) = ϕ(h(G)) ⊆ ϕ(G).

Assume that ψ(G) ⊆ ϕ(G). Then for any i ∈ I the set ϕ−1(ψ(i)) is non-empty.
By virtue of the axiom of choice AC of Zermelo, there exists a choice function
f : I −→ G such that f(i) ∈ ϕ−1(ψ(i)) for any i ∈ I. Since G is a free universal
algebra with the generators I, there exists a unique endomorphism f̂ : G −→ G such
that f(i) = f̂(i) for each i ∈ I. Consider the endomorphism h = f̂ · ϕ. We have
h(i) = ϕ(f(i)) = ψ(i) for each i ∈ I. Hence ψ = f̂ · ϕ and f̂ is a solution of the
equation ξ · ϕ = ψ. Any choice function f : I −→ G with f(i) ∈ ϕ−1(ψ(i)) is
an element of the Cartesian product Π{ϕ−1(ψ(i)) : i ∈ I} and any element of this
Cartesian product generates a unique solution of the equation ξ · ϕ = ψ. Moreover,
any solution of the equation ξ · ϕ = ψ is generated by a unique element of the
Cartesian product Π{ϕ−1(ψ(i) : i ∈ I}. The proof is complete.

Corollary 8. Let G be a free topological universal algebra. The lattices Q(G),
Spec(End(G), l) and Specf (End(G), l) are isomorphic.

Isomorphism of the lattices Q(G) and Spec(End(G), l) was established in [24,27].
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