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Morita contexts and closure operators in modules

A. I. Kashu

Abstract. The relations between the classes of closure operators of two module cat-
egories R-Mod and S-Mod are studied in the case when an arbitrary Morita context
(R, R US , SVR, S) is given. By the functors HomR(U, -) and HomS(V, -) two map-
pings are defined between the closure operators of these categories. Basic properties
of these mappings are investigated.
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1 Introduction. Preliminary notions and facts

This work is devoted to the study of closure operators of module categories in the
case when we have an arbitrary Morita context (R, RUS, S VR, S). The connection
between the classes of closure operators CO(R) and CO(S) of two module cate-
gories R-Mod and S-Mod is investigated. Using the functors HU = HomR(U, -) :
R-Mod → S-Mod and HV = HomS(V, -) : S-Mod → R-Mod two mappings

CO(R)
(−)∗ // CO(S)
(−)∗

oo are constructed and their principal properties are shown.

Now we remind briefly the basic notions used in continuation. Let R be a ring
with unity and R-Mod be the category of unitary left R-modules. The R-morphisms
of left R-modules will be written on the right: if M,M ′ ∈ R-Mod and f : M →M ′

is an R-morphism, then xf ∈ M ′ is the image of x ∈ M in M ′. The product
(composition) of the R-morphisms f : M → M ′ and g : M ′ → M ′′ is denoted by

f · g : M → M ′′, where x(f · g)
def
== (xf) g for x ∈ M . By L(M) the lattice of

submodules of M ∈ R-Mod is denoted.

The closure operator C of the category R-Mod is a function which associates to
every pair N ⊆ M , where M ∈ R-Mod and N ∈ L(M), a submodule CM (N) of
M such that:

(c1) N ⊆ CM (N) (extension);

(c2) if N1, N2 ∈ L(M) and N1 ⊆ N2, then CM (N1) ⊆ CM (N2) (monotony);

(c3) for every R-morphism f : M → M ′ and N ∈ L(M) the follwing relation is
true:

[

CM (N)
]

f ⊆ CM ′

(

Nf
)

(continuity) ([3, 4, 6, 7]).
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By CO(R) we denote the class of all closure operators of the category R-Mod.
The Morita context (R, RUS, S VR, S) consists of two rings R and S, two

bimodules RUS and S VR, and two bimodule morphisms (, ) : U⊗
S
V → R and

[, ] : V⊗
R
U → S, related by associativity:

(u, v)u′ = u[v, u′], [v, u]v′ = v(u, v′),

where u, u′ ∈ U and v, v′ ∈ V [1, 2, 5, 8–10].
The images of these morphisms I = (U, V ) ∈ R and J = [V,U ] ∈ S are ideals

of R and S, respectively, and are called trace-ideals of the given Morita context.
Throughout this paper we will consider that an arbitrary Morita context

(R, RUS, S VR, S) with the associated morphisms (, ) and [, ] is fixed. Then the
following pair of functors is determined:

R-Mod
HU=HomR(U, -) //

S-Mod,
HV =HomS(V, -)

oo

accompanied by two natural transformations:

ϕ : 1R−Mod −→ HVHU , ψ : 1S−Mod −→ HUHV ,

which are defined as follows.
For every module X ∈ R-Mod we have the R-morphism ϕ

X
: X → HVHU(X)

which acts by the rule:

u(v(xϕ
X

))
def
== (u, v)x, (1.1)

where x ∈ X, v ∈ V and u ∈ U . Similarly, for every module Y ∈ S-Mod the
S-morphism ψ

Y
: Y → HUHV(Y ) is defined such that:

v(u(y ψ
Y
))

def
== [v, u] y, (1.2)

for every y ∈ Y , u ∈ U and v ∈ V.
These natural transformations ϕ and ψ are in concordance with the functors

HU and HV by the following relations:

HU (ϕ
X
) = ψ

HU(X), (1.3)

HV (ψ
Y
) = ϕHV(Y ), (1.4)

for every X ∈ R-Mod and Y ∈ S-Mod.

2 Mappings between the classes of closure operators

Now we will study the situation described in Section 1: we have a Morita context

(R, R US, SVR, S) and consider the functors R-Mod
HU

//
S-Mod

HV

oo with the natural

transformations ϕ : 1R−Mod −→ HVHU and ψ : 1S−Mod −→ HUHV . Our purpose
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is to construct two mappings:

CO(R)
(−)∗ // CO(S)

(−)∗
oo

between the classes of closure operators of the categories R-Mod and S-Mod.

We begin with the mapping CO(R)
(−)∗

−−−−−−→ CO(S). Let C ∈ CO(R). We will

define a function C∗ in S-Mod which associates to every inclusion n : N
⊆

−−→ Y
of S-Mod a submodule C∗

Y (N) ⊆ Y . With this intention we apply HV to n and
consider in R-Mod the decomposition of the morphism HV(n) with respect to the
given closure operator C:

HV(N)
HV(n) //

HV(n)∼=

��

HV(Y )
πnC

nat
// HV(Y )

/

CHV(Y )

(

ImHV(n)
)

ImHV(n)
jnC

⊆

// CHV(Y )

(

ImHV(n)
)

,

⊆ i
n
C

OO

where HV(n) is the restriction of HV(n) to its image, jnC and inC are the inclusions,
πnC is the natural epimorphism. Since HV(n) is a monomorphism, it is obvious that
its restriction HV(n) is an isomorphism.

Further, by HU and ψ
(

defined by (1.2)
)

we obtain in S-Mod the situation:

N
n

⊆

//

ψ
N

��

Y

ψ
Y

�� ++WWWWWWWWWWWW

HUHV(N)
HUHV(n) //

HU(HV(n))∼=
��

HUHV(Y )
HU(πnC)

//HU
[

HV(Y )
/

CHV(Y )

(

ImHV(n)
)]

HU
(

ImHV(n)
)HU(jnC)

// HU
[

C
HV(Y )

(

ImHV(n)
)]

.

HU(inC)

OO

Definition. For every closure operator C ∈ CO(R) we define the function C∗ in
S-Mod by the following equivalent rules:

C∗

Y (N)
def
== Ker [ψ

Y
·HU(πnC)] or C∗

Y (N)
def
== [ImHU(inC)]ψ−1

Y
, (2.1)

where n : N
⊆

−−→ Y is an arbitrary inclusion of S-Mod.

The equivalence of two forms of representation of a module C∗

Y (N) follows from
the left exactness of the functor HU , which implies the relation: ImHU(inC) =
KerHU(πnC).

In a completely similar manner the inverse mapping CO(S)
(−)∗

−−−−→ CO(R) can
be defined. Namely, for every closure operator D ∈ CO(S) and every inclusion

m : M
⊆

−−→ X of R-Mod we consider in S-Mod the decomposition of HU(m) with
respect to the operator D:
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HU(M)
HU(m) //

HU(m)∼=

��

HU(X)
πmD

nat
// HU(X)/DHU(X)

(

ImHU(m)
)

ImHU(m)
jmD

⊆

// DHU(X)

(

ImHU(m)
)

.

⊆ i
m
D

OO

Applying HV and using ϕ
(

defined by (1.1)
)

we obtain in R-Mod the diagram:

M
m

⊆

//

ϕ
M

��

X

ϕ
X

�� ++WWWWWWWWWWWW

HVHU(M)
HVHU(m) //

HV(HU(m))∼=

��

HVHU(X)
HV(πmD ) // HV

[

HU(X)
/

DHU(X)

(

ImHU(m)
)]

HV
(

ImHU(m)
) HV(jmD )// HV

[

DHU(X)

(

ImHU(m)
)]

.

HV(imD )

OO

We define the function D∗ in R-Mod by the following equivalent rules:

D∗

X(M)
def
== Ker [ϕ

X
·HV(πmD )] or D∗

X(M)
def
== [ImHV(imD )]ϕ−1

X
, (2.2)

for every inclusion m : M
⊆

−−→ X of R-Mod.
The total symmetry of the investigated situation and of the used methods of

construction delivers us from the necessity to repeat for this mapping the results
obtained for the previous one. By this reason in continuation we will study mainly

the mapping CO(R)
(−)∗

−−−−−−→ CO(S) and for the inverse mapping we indicate only
some affirmations without proofs.

Theorem 2.1. For every closure operator C ∈ CO(R) the function C∗ defined by

the rule (2.1) is a closure operator of the category S-Mod.

Proof. For the function C∗ we will verify the conditions (c1)− (c3) of the definition
of closure operator.

(c1) From the construction of C∗ and since ψ is natural we have: n ·ψ
Y

= ψ
N
·

HUHV (n), therefore n ·ψ
Y

= ψ
N
·HU

(

HV (n)
)

·HU(jnC) ·HU(inC). Hence Im
(

n ·ψ
Y

)

⊆

ImHU(inC), i.e. Nψ
Y

⊆ ImHU(inC), which means that N ⊆
[

ImHU(inC)
]

ψ−1
Y

def
==

C∗

Y (N).

(c2) Let Y ∈ S-Mod and N1 ⊆ N2, where N1, N2 ∈ L(Y ). We denote the
corresponding inclusions as follows:

i : N1
⊆

−−→ N2, n1 : N1
⊆

−−→ Y, n2 : N2
⊆

−−→ Y,

where i · n2 = n1. By HV we obtain in R-mod the situation:
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HV(N1)

HV(i)

��

HV
(n

1 )

**TTTTTTTTTTTTTTTTTT

HV(Y ) ,

HV(N2)

H
V (n2

)

44jjjjjjjjjjjjjjjjjj

whence it follows the inclusion κ : ImHV(n1)
⊆

−−→ ImHV(n2).

Now we will consider in R-mod the decompositions of the morphisms HV(n1)
and HV(n2) with respect to the given operator C:

HV(N1)

HV(n1)

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
HV(n1)//

HV(i)

��

// ImHV(n1)

⊇ κ

���
�
�
�
�
�
�

j
n1
C

⊆

// C
HV(Y )

(

ImHV(n1)
)

i n1
C

⊆

((QQQQQQQQQQQQ

⊇ l

���
�
�
�
�
�
�

HV(Y ) ,

HV(N2)

H
V(n2)

11dddddddddddddddddddddddddddddddddddddddddddddddd

HV(n2)

// ImHV(n2)
j
n2
C

⊆

// C
HV(Y )

(

ImHV(n2)
)

i
n2
C

⊆

66mmmmmmmmmmmm

where κ implies the inclusion l by the condition (c2) for C.

Applying HU to this diagram we obtain in S-Mod the following situation:

HUHV(N1)

HUHV(n1)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

HUHV(i)

��

// HU
[

C
HV(Y )

(

ImHV(n1)
)]

HU
(i n1
C )

))SSSSSSSSSSSSSS

HU(l)

���
�
�
�
�
�
�

HUHV(Y ) Y.
ψ
Yoo

HUHV(N2)

H
UH
V (n2)

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
// HU

[

CHV(Y )

(

ImHV(n2)
)]

H
U (i
n2
C

)

55kkkkkkkkkkkkkk

Since this diagram commutes, it follows that ImHU(in1
C ) ⊆ ImHU(in2

C ), therefore
[ImHU(in1

C )]ψ−1
Y

⊆ [ImHU(in2
C )]ψ−1

Y
, which by the definition means that C∗

Y (N1) ⊆
C∗

Y (N2), proving (c2).

(c3) For an arbitrary S-morphism f : Y → Y ′ and an inclusion n : N
⊆

−−→ Y
of S-Mod now we will show that [C∗

Y (N)] f ⊆ C∗

Y ′(Nf). In S-Mod we have the
situation:

N

f

���
�
�

n

⊆

// Y

f

��
Nf

n′

⊆

//______ Y ′,
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where f is the restriction of f on N and n′ is the corresponding inclusion. By
HV we obtain in R-Mod the commutative diagram:

HV(N)

HV(f)
���
�
�

HV (n) // HV(Y )

HV(f)
��

HV(Nf)
HV (n′) //______ HV(Y ′).

We supplement this diagram considering the decompositions of the morphisms
HV(n) and HV(n′) with respect to the operator C:

HV(N)

HV(f)

��

�

�

�
�

&

-

3

HV(n)∼=

��

HV(n)

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ImHV(n)

[HV(f)]′

���
�
�

jnC

⊆

// C
HV(Y)

(

ImHV(n)
)

[HV(f)]′′

���
�
�

inC

⊆

// HV(Y )
πnC

nat
//

HV(f)

��

HV(Y )
/

C
HV(Y)

(

ImHV(n)
)

π

���
�
�

ImHV(n′)
jn

′

C //

HV(n′)∼=

��

CHV(Y)

(

ImHV(n′)
)

in
′

C

⊆

//
HV(Y ′)

πn
′

C

nat
// HV(Y ′)

/

CHV(Y ′)

(

ImHV(n′)
)

.

HV(Nf)

H
V(n

′ )

33fffffffffffffffffffffffffffff

Here the morphism HV(f) implies [HV(f)]′, which in its turn by the condition (c3)
for C determines the morphism [HV(f)]′′. Then in a natural way the morphism π
can be defined such that the diagram commutes.

Finally, passing in S-Mod by HU and using ψ we obtain the diagram:

C∗

Y (N)

f ′

���
�
�

⊆ // Y

f

��

ψ
Y // HUHV(Y )

HU(πnC) //

HUHV(f)

��

HU
[

HV(Y )
/

C
HV(Y)

(

ImHV(n)
)]

HU(π)
���
�
�

C∗

Y ′(Nf)
⊆ // Y ′

ψ
Y ′

// HUHV(Y ′)
HU(πn

′

C )
// HU

[

HV(Y ′)
/

C
HV(Y ′)

(

ImHV(n′)
)]

.

By the definition of C∗ and commutativity of this diagram it follows that:

C∗

Y (N)
def
== Ker [ψ

Y
·HU(πnC)] ⊆ Ker [ψ

Y
·HU(πnC) ·HU(π)]

= Ker [f · ψ
Y ′ ·H

U(πn
′

C )] .

Therefore [C∗

Y (N)]f ⊆ Ker [ψ
Y ′ ·H

U(πn
′

C )]
def
== C∗

Y ′(Nf), which shows the condition
(c3) for C∗, ending the proof.

By the symmetry for the inverse mapping CO(S)
(−)∗

−−−−−−→ CO(R) it follows
that for every closure operator D ∈ CO(S) the function D∗ defined by the rule
(2.2) is a closure operator of R-Mod.
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Further we will illustrate the previous constructions by two particular cases, con-
sidering the effect of the studied mappings to the extremal (trivial) closure operators
C = R and C = 1R .

1. Let C = R, i.e. CX(M) = M for every inclusion M ⊆ X of R-Mod. By the

construction of C∗ in this case for every inclusion n : N
⊆

−−→ Y of S-Mod we have:

C
HV(Y )

(

ImHV(n)
)

= ImHV(n), jnC = 1, jnC · inC = inC : ImHV(n)
⊆

−−→ HV(Y )

and ImHU(inC) = ImHUHV(n). Therefore C∗

Y(N) = [ImHUHV(n)]ψ−1
Y

.
We denote by D◦ the closure operator of S-Mod defined by the rule:

(D◦)Y (N)
def
== [ImHUHV(n)]ψ−1

Y

for every inclusion n : N
⊆

−−→ Y of S-Mod. Then from the foregoing it follows that
∗

R = D◦ and is clear that D◦ is the least closure operator of the form C∗ for some
C ∈ CO(R).

2. Let C = 1R , i.e. CX(M) = X for every inclusion M ⊆ X of R-Mod.

Then by the construction of C∗ for every inclusion n : N
⊆

−−→ Y of S-Mod we
have inC = 1, i.e. C

HV(Y )

(

ImHV(n)
)

= HV(Y ), hence HU(inC) = 1. Therefore

C∗

Y (N) = [HUHV(Y )]ψ−1
Y

= Y , which means that C∗ = 1S .
By these arguments and using the symmetry we have:

Proposition 2.2. 1) ∗

R = D◦,
∗

S = C◦;

2) 1 ∗

R = 1S, 1 ∗

S = 1R . �

In conclusion of this section we give some remarks on the closure operators
defined by the trace-ideals I = (U, V ) ⊆ R and J = [V,U ] ⊆ S of the studied
Morita context (R, R US, SVR, S). The ideals I and J define two preradicals ( r(I) in
R-Mod and r(J) in S-Mod) by the rules:

r(I)(X)
def
== {x ∈ X

∣

∣ Ix = 0} = Kerϕ
X
,

r(J)(Y )
def
== {y ∈ Y

∣

∣Jy = 0} = Kerψ
Y
,

where X ∈ R-Mod and Y ∈ S-Mod. These preradicals imply two closure operators
(CI in R-Mod and CJ in S-Mod) defined as follows:

CI

X(M)
def
== {x ∈ X

∣

∣ Ix ⊆M},

CJ

Y (N)
def
== {y ∈ Y

∣

∣ Jy ⊆ N},

for every M ⊆ X of R-Mod and N ⊆ Y of S-Mod.
Now we will show the connection between the closure operators CI and CJ in

the studied situation. Let m : M
⊆

−−→ X be an arbitrary inclusion of R-Mod. Using
CI we have the situation:

M
m

⊆

//
jm
C I

⊆

##HH
HH

HH
HH

H X .

CI

X(M)

i
m

C
I

⊆

::vvvvvvvvv
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We apply the functor HU and consider the decomposition of the morphism
HU(m) with respect to the operator CJ :

ImHU(m)
jm
CJ

⊆

// CJ

HU(X)

(

ImHU(m)
)

im
CJ

⊇
wwnnnnnnnnnnnn

HU(M)

HU(m)∼=

OO

HU(jm
CI

)

��

HU(m) // HU(X)

HU
(

CI
X(M)

)

HU(im
CI

)

∼=
//

H
U(i
m

C
I
) 55llllllllllllll

ImHU(im
CI

) ,

⊇

hhPPPPPPPPPPPP

where HU(m) is the restriction of HU(m) and HU(im
CI

) is the restriction of HU(im
CI

).

The connection between the operators CI and CJ(the transition from CI to CJ)
can be expressed as follows.

Proposition 2.3. For every inclusion m : M
⊆

−−→ X of R-Mod the relation

ImHU(im
CI

) = CJ

HU(X)

(

ImHU(m)
)

holds.

Proof. The left part consists in the following morphisms of HU(X):

ImHU(im
CI

) = {f : U → X
∣

∣∃g : U → CI

X(M), f = g · im
CI
}

= {f : U → X
∣

∣Uf ⊆ CI

X(M)} = {f : U → X
∣

∣ I(Uf) ⊆ M}

= {f : U → X
∣

∣ (U, V )(Uf) =
(

U [V,U ]
)

f ⊆ M}

= {f : U → X
∣

∣U
(

[V,U ]
)

f ⊆ M}.

On the other hand, by the definitions we have:

CJ

HU(X)

(

ImHU(m)
)

= {f : U → X
∣

∣ Jf = [V,U ]f ⊆ ImHU(m)}

= {f : U → X
∣

∣U
(

[V,U ]f
)

⊆ M}.

Comparing the obtained expressions we see the relation of proposition.

The symmetric relation (which shows the inverse transition from CJ to CI) also

is true: ImHV(in
CJ

) = CI

HV(Y )

(

ImHV(n)
)

for every inclusion n : N
⊆

−−→ Y of
S-Mod.

3 “Star” mappings and partial order

Further we will investigate the properties of the mappings CO(R)
(−)∗ // CO(S)
(−)∗

oo

defined in Section 2. We begin with the verification of the behavior of these mappings
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with respect to the partial orders in the classes CO(R) and CO(S). The order
relation in CO(R) is defined in a natural way:

C ≤ D ⇐⇒ CX(M) ⊆ DX(M)

for every pair M ⊆ X of R-Mod.

Theorem 3.1. The mapping CO(R)
(−)∗

−−−−−−→ CO(S) defined by the rule (2.1) is

monotone, i.e. C ≤ D implies C∗ ≤ D∗, where C,D ∈ CO(R).

Proof. Let C,D ∈ CO(R) and C ≤ D. Then for every inclusion n : N
⊆

−−→ Y of
S-Mod we have in R-Mod the situation:

CHV(Y )

(

ImHV(n)
)

⊇ i

���
�
�
�
�
�
�

in
C

⊆

((PPPPPPPPPPPP
HV(Y )

/

CHV(Y )

(

ImHV(n)
)

π

���
�
�
�
�
�
�

ImHV(n)

j
n
C

⊆

66mmmmmmmmmmmmm

j n
D

⊆

((QQQQQQQQQQQQQ
HV(Y )

π
n
C

nat

55kkkkkkkkkkkkkkk

πn
D

nat
))SSSSSSSSSSSSSSS

DHV(Y )

(

ImHV(n)
)

i
n
D

⊆

66nnnnnn
HV(Y )

/

DHV(Y )

(

ImHV(n)
)

,

where the inclusion i follows from the relation C ≤ D, and π is defined by i.
Therefore HU (πnC) ·HU (π) = HU (πnD) and so KerHU (πnC) ⊆ KerHU (πnD).

Now it is clear that Ker [ψ
Y
· HU (πnC)] ⊆ Ker [ψ

Y
· HU (πnD)], which means that

C∗

Y (N) ⊆ D∗

Y (N) for every inclusion N ⊆ Y of S-Mod, i.e. C∗ ≤ D∗.

Similarly, the inverse mapping CO(S)
(−)∗

−−−−−−→ CO(R) also is monotone:
D1 ≤ D2 implies D ∗

1 ≤ D ∗

2 for D1,D2 ∈ CO(S).

Concerning the order relations in the classes of closure operators, the following
property of the studied mappings deserves to be mentioned.

Theorem 3.2. For every closure operator C ∈ CO(R) is true the relation: C ≤ C∗∗.

Proof. Let C ∈ CO(R) and m : M
⊆

−−→ X be an arbitrary inclusion of R-Mod. We
will compare the R-modules CX(M) and C∗∗

X(M). With this aim we consider the
following inclusions R-Mod:

M

m

⊆ ))j

⊆

// CX(M)
i

⊆

// X .

By HU we obtain in S-Mod the diagram:

HU(M)

HU(m)

**

HU(m)∼=
��

HU(j) // HU
(

CX(M)
) HU(i) // HU(X) ,

ImHU(m)

κ
⊆

22eeeeeeeeeeeeeeeeee
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where HU(m) is the restriction of HU(m) and κ is the respective inclusion. To
obtain the module C∗∗

X (M) we construct firstly the module C∗

HU(X)

(

ImHU(m)
)

,

applying the definition of C∗ for the inclusion κ
(

see (2.1)
)

. For that we consider
in R-Mod the decomposition of HV(κ) by the operator C, using ϕ:

M

m

⊆

**

ϕ
M

!!

ϕ
M

��

j

⊆

// CX(M)

ϕ′

X

���
�
�
�
�
�
�
�
�
�
�

i

⊆

// X

ϕ
X

�� ��5
5

5
5

5
5

5
5

5
5

5
5

5
5

HVHU(M)

HV(HU(m))∼=
��

HV
(m)

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

HV
(

ImHU(m)
)

HV(κ)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

HV(κ)∼=
��

ImHV(κ)
jκC

⊆

// CHUHV(X)

(

ImHV(κ)
) iκC

⊆

// HVHU(X)
πκC

nat
// HVHU(X)

/

B,

where ϕ
M

= ϕ
M

·HV(HU(m)) ·HV(κ) and B = CHVHU(X)

(

ImHV(κ)
)

. Using the
commutativity and the condition (c3) for C, we obtain the morphism ϕ′

X
, which

preserves the commutativity of diagram.
Further we apply the functor HU and consider the decomposition of HU(m)

with respect to C∗, obtaining in S-Mod the diagram:

HU(M)

HU(m)

**

HU(ϕ
M

)

��

HU (m)∼=

��

HU(j) // HU (

CX(M)
)

HU
(i)

''OOOOOOO

HU(ϕ′
X

)

���
�
�
�
�
�
�
�
�
�

HU(i) // HU(X)

ψ
HU(X)

���
�
�
�
�
�
�
�
�
�
�

πm
C∗ //

HU
(

ϕ
X

)

��

f

��5
55

55
55

55
55

55
55

55
55

55
55

55
HU (X)

/

Ker f

∼=

��

f

��

ImHU(m)

jm
C∗

⊆

//

ψ
ImHU(m)

��

A

i
m
C
∗

⊆

::v
v

v
v

v
Imf

⊇

��

HUHV
(

ImHU(m)
)

HU
(

HV(κ)
)

∼=

��
HU

(

ImHV(κ)
)

HU(jκ
C

)
// HU[

C
HVHU(X)

(

ImHV(n)
)]

HU(iκ
C

)
// HUHVHU(X)

HU(πκ
C

)
// HU[

HVHU(X)
/

B
]

,

where we denote f = ψ
HU(X) ·H

U(πκC) and A = C∗

HU(X)

(

ImHU(m)
)

.

By the definition of C∗ for the inclusion κ we have:

C∗

HU(X)

(

ImHU(m)
) def

== Ker [ψ
HU(X) ·H

U(πκC)] = Ker f.

Using the first isomorphism theorem for the morphism f , we obtain HU(X)
/

Ker f ∼=
Imf . This isomorphism together with the respective inclusion determines the
monomorphism f , preserving the commutativity of diagram. We remark also that
by the relation (1.3) we have HU

(

ϕ
X

)

= ψ
HU(X)

(

for the dual result (1.4) is used
)

.
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Now we will show that the morphism HU(i) factors through the morphism
im
C∗ . Indeed, by the construction we have iκC · πκC = 0, hence HU(iκC · πκC) =
HU(iκC) ·HU(πκC) = 0. The commutativity of diagram implies the relations:

HU(i) · f = HU(ϕ′

X
) ·HU(iκC) ·HU(πκC) = HU(ϕ′

X
) · 0 = 0 ,

therefore ImHU(i) ⊆ Ker f
def
== C∗

HU(X)

(

ImHU(m)
)

. So the morphism HU(i) can

be represented in the form: HU(i) = HU(i) · im
C∗ , preserving the commutativity of

diagram.

In continuation we follow the construction of the closure operator C∗∗ for the

initial inclusion m : M
⊆

−−→ X, using the module C∗

HU(X)

(

ImHU(m)
)

. For that we

apply the functor HV to the necessary part of the previous diagram:

M

m

⊆

))j

⊆

//

ϕ
M

��

CX(M)
ϕ
CX(M)

��

i

⊆

// X

ϕ
X

��

g

))SSSSSSSSSSSSSSSSS

HVHU(M)

H
VH
U(m)

**

HV(HU(m))∼=

��

HVHU(j) // HVHU
(

CX(M)
)

HV(HU(i))

��

HVHU(i) // HVHU(X)
HV(πm

C∗) //

HV(ψ
HU(X)

)

���
�
�

HVHU(ϕ
X
)
��

HV(f)

))SSSSSSSSSSSSSS HV
[

HU(X)
/

A
]

HV(f)

��
HV

(

ImHU(m)
)

H
V(κ)

22ffffffffffffff
HV(jm

C∗ )
// HV(A)

H
V(i
m
C
∗
) 66llllllllllllll
HVHUHVHU(X)

HVHU(πκC)// HVHU
[

HVHU(X)
/

B
]

,

where g = ϕ
X
·HV(πm

C∗) and by the definition C∗∗

X (M) = Ker g.

We observe that since f is a monomorphism, HV(f) also is a monomorphism,

therefore Ker
(

g · HV(f)
)

= Ker g
def
== C∗∗

X (M). Since C∗

HU(X)

(

ImHU(m)
) def

==

Ker [ψHU(X) · H
U(πκC)], we have the relation im

C∗ · ψHU(X) · H
U(πκC) = 0, therefore

HV [im
C∗ · ψHU(X) ·H

U(πκC)] = HV(im
C∗) ·HV(ψ

HU(X)) ·H
VHU(πκC) = 0.

Using this fact, now from the commutativity of the last diagram we obtain:

i · ϕ
X
·HV(πmC∗) ·HV(f) = ϕ

CX(M)
·HV(HU(i)) ·HV(imC∗) ·HV(πmC∗) ·HV(f) =

= ϕ
CX(M)

·HV(HU(i)) · [HV(imC∗) ·HV(ψ
HU(X)) ·H

VHU(πκC)] =

= ϕ
CX(M)

·HV(HU(i)) · 0 = 0.

Therefore CX(M) ⊆ Ker [ϕ
X
·HV(πm

C∗) ·HV(f)] = Ker [ϕ
X
·HV(πm

C∗)]
def
== C∗∗

X (M).
So we have CX(M) ⊆ C∗∗

X (M) for every inclusion M ⊆ X, which means
that C ≤ C∗∗.

The symmetric result also is true: D ≤ D∗∗ for every operator D ∈ CO(S).
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4 Intersection of closure operators and “star” mappings

In this section we will study the behavior of the “star” mappings relative to the
intersection of closure operators. The intersection in CO(R) is defined as follows:

(

∧

α∈A

Cα
)

X
(M)

def
==

⋂

α∈A

[

(Cα)
X

(M)
]

,

where {Cα
∣

∣α ∈ A} ⊆ CO(R) and M ⊆ X.

Preliminarily we formulate two facts which show the concordance of kernels and
preimages of morphisms with the intersection of submodules (see Lemma 4.1).

Let {Cα
∣

∣α ∈ A} ⊆ CO(R) and n : N
⊆

−−→ Y be an inclusion of S-Mod. By
the definition we have:

(Cα)∗Y (N)
def
== Ker

[

ψ
Y
·HU(πnCα)

]

, (4.1)

where πnCα : HV(Y ) → HV(Y )
/[

(Cα)HV(Y)

(

ImHV(n)
)]

is the natural epimorphism.
Similarly, for the operator

∧

α∈A

Cα we have:

(

∧

α∈A

Cα
)

∗

Y
(N)

def
== Ker

[

ψ
Y
·HU

(

πn∧
α∈A

Cα

)]

, (4.2)

with the natural epimorphism πn∧
α∈A

Cα
: HV(Y ) → HV(Y )

/[

(
∧

α∈A

Cα)HV(Y)

(

ImHV(n)
)]

.

Lemma 4.1. For every family of operators {Cα
∣

∣α ∈ A} ⊆ CO(R) and for every

inclusion n : N
⊆

−−→ Y of S-Mod the following relations are true:

a) KerHU
(

πn∧
α∈A

Cα

)

=
⋂

α∈A

[

KerHU(πnCα)
]

; (4.3)

b)
[

⋂

α∈A

(

KerHU(πnCα)
)

]

ψ−1
Y

=
⋂

α∈A

[(

KerHU(πnCα)
)

ψ−1
Y

]

. (4.4)

Proof. a) We consider the kernels of morphisms:

HU(πnCα) : HUHV(Y ) −→ HU
[

HV(Y )
/

(Cα)HV(Y )

(

ImHV(n)
)]

,

HU(πn∧
α∈A

Cα
) : HUHV(Y ) −→ HU

[

HV(Y )
/

(
∧

α∈A

Cα)
HV(Y )

(

ImHV(n)
)]

.

By the definition of HU we have:

KerHU(πnCα) =
{

f : U → HV(Y )
∣

∣ f · πnCα = 0
}

=
{

f : U → HV(Y )
∣

∣ Imf ⊆ (Cα)
HV(Y )

(

ImHV(n)
)}

,
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KerHU(πn∧
α∈A

Cα
) =

{

f : U → HV(Y )
∣

∣ f · πn∧
α∈A

Cα
= 0

}

=
{

f : U → HV(Y )
∣

∣ Imf ⊆
(

∧

α∈A

Cα
)

HV(Y )

(

ImHV(n)
)

=
⋂

α∈A

[

(Cα)
HV(Y )

(

ImHV(n)
)]}

.

Therefore

⋂

α∈A

[

KerHU(πnCα)
]

=
{

f : U → HV(Y )
∣

∣ Imf ⊆ (Cα)
HV(Y )

(

ImHV(n)
)

∀α ∈ A
}

=
{

f : U → HV(Y )
∣

∣ Imf ⊆
⋂

α∈A

[

(Cα)
HV(Y )

(

ImHV(n)
)]}

.

Comparing with the previous relation, now it is clear that KerHU(πn∧
α∈A

Cα
) =

⋂

α∈A

[

KerHU(πnCα)
]

, i.e. (4.3) is true.

b) In continuation we consider the composition of morphisms:

Y
ψ
Y−−→ HUHV(Y )

HU(πnCα)−−−−−→ HU
[

HV(Y )
/

(Cα)HV(Y )

(

ImHV(n)
)]

,

by which the module (Cα)
∗

Y (N) = Ker [ψ
Y
·HU(πnCα)] is defined.

Then we have:

y ∈
[

⋂

α∈A

KerHU(πnCα)
]

ψ−1
Y

⇔ yψ
Y
∈

⋂

α∈A

[

KerHU(πnCα)
]

⇔

⇔ yψ
Y
∈ KerHU(πnCα) ∀α ∈ A ⇔ y ∈

[

KerHU(πnCα)
]

ψ−1
Y

∀α ∈ A ⇔

⇔ y ∈
⋂

α∈A

[(

KerHU(πnCα)
)

ψ−1
Y

]

,

which proves the relation (4.4).

Now we can show the concordance of the mapping CO(R)
(−)∗

−−−−−→ CO(S) by
the intersection of closure operators.

Theorem 4.2. For every family of closure operators {Cα |α ∈ A} ⊆ CO(R) the

following relation is true:
(

∧

α∈A

Cα
)

∗
=

∧

α∈A

C ∗

α .
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Proof. For every inclusion n : N
⊆

−−→ Y of S-Mod the modules
(

Cα
)

∗

Y
(N) and

(
∧

α∈A

Cα
)

Y
(N) are defined by the rules (4.1) and (4.2). From Lemma 4.1 it follows

that:
(

∧

α∈A

Cα
)

∗

Y
(N)

(4.2)
== Ker

[

ψ
Y
·HU

(

πn∧
α∈A

Cα

)]

=
[

KerHU
(

πn∧
α∈A

Cα

)]

ψ−1
Y

(4.3)
==

[

⋂

α∈A

KerHU(πnCα)
]

ψ−1
Y

(4.4)
==

⋂

α∈A

[(

KerHU(πnCα)
)

ψ−1
Y

]

=
⋂

α∈A

[

Ker
(

ψ
Y
·HU(πnCα)

)] (4.1)
==

⋂

α∈A

[(

Cα
)

∗

Y
(N)

]

=
(

∧

α∈A

C ∗

α

)

Y
(N),

which means that
(
∧

α∈A

Cα
)

∗
=

∧

α∈A

C ∗

α .

The symmetric result also holds:
(
∧

α∈A

Dα

)

∗
=

∧

α∈A

D ∗

α for every family of opera-

tors {Dα
∣

∣α ∈ A} ⊆ CO(S).
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