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Integral equations in identification of external force and

heat source density dynamics

Aliona I. Dreglea, Nikolay A. Sidorov

Abstract. We consider a linear inhomogeneous wave equation and linear inhomo-
geneous heat equation with initial and boundary conditions. It is assumed that the
inhomogeneous terms describing the external force and heat source in the model are
decomposed into Fourier series uniformly convergent together with the derivatives up
to the second order. In this case, time-dependent expansion coefficients are to be
determined. For the purpose of determination of the unknown coefficients, non-local
boundary conditions are introduced in accordance with the averaged dynamics re-
quired in the model. The nonlocal condition enables the observation of the averaged
dynamics of the process. Sufficient conditions are given for the unique classical so-
lution existence. A method for finding the solution of the problem is proposed by
reducing to the system of Volterra integral equations of the first kind, which is explic-
itly constructed in the work. The solution is constructed in explicit form by reduction
to Volterra integral equations of the second kind with kernels that admit the construc-
tion of the resolvent by means of the Laplace transform. Thus, the work provides a
way to solve the identification problem in an analytical form. An illustrative example
demonstrating the effectiveness of the proposed approach is given. The statement of
the identification problem and the method for solving it allow generalizations also in
the case of a system of inhomogeneous equations. The results can be useful in the for-
mulation and solution of the optimization problems of the boundary control process.

Mathematics subject classification: 34A34, 34A12, 35L10, 35L05, 35K05, 43A50,
44A10, 45D05.
Keywords and phrases: BVP, IVP, PDE, second-order hyperbolic equation, wave
equation, nonlocal boundary conditions, convergence of Fourier series and of inverse
transforms, spectrum, resolvent, Laplace transform, Volterra integral equations, inte-
gral observations, identification of an external force, ordinary differential equations,
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1 Identification of an external force dynamics in the wave equation

We consider an inhomogeneous wave equation describing the forced vibrations of
a string under the action of an external force, for zero initial and boundary conditions
[15, p. 96].

∂2u

∂t2
= a2 ∂2u

∂x2
+ F (x, t), 0 < x < l, 0 ≤ t ≤ T < ∞. (1)

The function F (x, t) = f(x) +
∑N

j=1 di(x)wj(t) describes the expression for the
density (load) of the external force at the point x ∈ (0, l) at time t [15, p. 26].
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It is assumed that the continuous functions f(x), dj(x) are given for x ∈ [0, l] and
have continuous derivatives in the interval (0, l) up to the second order, continuously
continuable to the endpoints of the interval, the third derivatives are piecewise-
continuous, and in addition

f(0) = f(l) = f (2)(0) = f (2)(l) = dj(0) = dj(l) = d
(2)
j (0) = d

(2)
j (l) = 0,

f(x) =

∞
∑

n=1

cn sin
nπx

l
, dj(x) =

∞
∑

n=1

djn sin
nπx

l
, j = 1, ..., N,

|cn| = O

(

1

n4

)

, |djn| = O

(

1

n4

)

.

The functions wj(t) characterizing the dynamics of the external force F (x, t),
are to be determined. We shall consider the simplest process of oscillations with
homogeneous boundary and initial conditions







u(0, t) = u(1, t) = 0,

u(x, 0) = ∂u(x,t)
∂t

|t=0 = 0.
(2)

For the uniqueness of the definition of the functions wj(t), it is assumed that the
averaged dynamics of the oscillations satisfies N nonlocal conditions:

∫ 1

0
Li(x)u(x, t)dx = ∆i(t), i = 1, ..., N, 0 ≤ t < ∞, (3)

where functions ∆i(t) and Li(x) are given, and

Li(x) =
N

∑

j=1

bij sin
mjπx

l
, mj ∈ N,

∆i(0) = ∆
(1)
i (0) = 0.

Remark 1. The non-local condition (3) enables the averaged dynamics of oscillations
observation. The integral observation conditions were previously used to solve a
number of inverse problems for hyperbolic equations [4–6, 9, 10].

Thus, the problem of identifying the functions wj(t), j = 1, ..., N , will be solved
for modeling the simplest oscillations described by equation (1) with the conditions
(2)-(3).

Let us formulate the sufficient conditions for desired continuous and uniquely
determined functions wj(t).

Theorem 1. Let det[bij ]
N
i,j=1 6= 0, det[djmi

]Ni,j 6= 0. Then the problem of identification

of functions wj(t), j = 1, ..., N , has a unique solution in the class of continuous

functions. Moreover, these functions are uniquely determined from the system of

Volterra integral equations.
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Proof. Following [15, p. 96], the solution u(x, t) of problem (1)-(2) will be constructed
in the form of the Fourier series

u(x, t) =

∞
∑

n=1

un(t) sin
nπx

l
. (4)

Then, in view of the initial conditions corresponding to (2), the functions un(t) must
satisfy the Cauchy problems







d2un(t)
dt2

+
(

nπa
l

)2
un(t) = cn +

∑N
j=1 djnwj(t),

un(0) = 0, u′

n(0) = 0, n = 1, 2, . . . .
(5)

The solution of the problem (5) is the following

un(t) =
l

πna

∫ t

0
sin

(πn

l
a(t − s)

)

(cn +

N
∑

j=1

djnwj(s)) ds, n = 1, 2, . . . . (6)

Thus, the expansion (4) of the desired solution u(x, t) is the following

u(x, t) =
∞
∑

n=1

l

πna

∫ t

0
sin

(πn

l
a(t − s)

)



cn +
N

∑

j=1

djnwj(s)



 ds sin
πnx

l
+

+
∞

∑

n=1

l

πna

l

πna

∫ t

0
sin

(πn

l
a(t − s)

)

dscn sin
πnx

l
, (7)

where
∫ t

0
sin

(πn

l
a(t − s)

)

ds =
l

πna

(

1 − cos
πn

l
at

)

.

On the other hand, substitution of the expansion (4) into non-local boundary
conditions (3) gives the following equalities

∫ l

0

N
∑

j=1

bij sin
mjπx

l

∞
∑

n=1

sin
πnx

l
un(t) dx = ∆i(t), i = 1, . . . , N. (8)

Since
∫ l

0
sin

mjπx

l
sin

πnx

l
dx =

{

0 at n 6= mj,
2/l at n = mj,

then the equalities (8) are rewritten as the next system of linear algebraic equations

2

l
Bv(t) = ∆(t), (9)

where by the hypothesis of the theorem B = [bij]
N
i,j=1 is an invertible matrix,

v(t) = (um1
(t), . . . , umN

(t))T , ∆(t) = (∆1(t), . . . ,∆N (t))T .
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Thus, the vector function v(t) is determined by the formula

(um1
(t), . . . , umN

(t))T =
l

2
B−1∆(t). (10)

Therefore, in order to find the desired functions w1(t), . . . , wN (t) (6) for n =
m1, . . . ,mN are used. We obtain the following system

umi
(t) =

l

πmia

∫ t

0
sin

(πm1

l
a(t − s)

)

N
∑

j=1

djmi
wj(s) ds+ (11)

+(
l

πmia
)2

(

1 − cos
πmia

l
t
)

cmi
,

where i = 1, . . . , N. According to formula (10) on the left-hand side of system (11)
there is a known vector function of the argument t

(um1
(t), . . . , umN

(t))T =
l

2
B−1∆(t). (12)

To find the desired functions w1(s), . . . , wN (s) from system (11) we introduce the N
auxiliary functions

ŵmi
(s) ≡

N
∑

j=1

djmi
wj(s) ds, i = 1, ..., N. (13)

The introduced auxiliary functions ŵmi
(s) (using (11), (12)), must satisfy the

following integral equations of the first kind

l

πmia

∫ t

0
sin

(πmi

l
a(t − s)

)

ŵmi
(s) ds = (14)

−

(

l

πmia

)2 (

1 − cos
πmia

l
t
)

cmi
+ δi(t),

for i = 1, 2, . . . , N, and on the right side we use the notation

(δ1(t), . . . , δN (t))T =
l

2
B−1(∆1(t), . . . ,∆N (t))T .

Since ∆i(0) = ∆′

i(0) = 0, then δi(0) = δ′i(0) = 0. Therefore, for t = 0, the
right-hand sides in equations (14) and their derivatives are zeros. Consequently,
equations (14) reduced to integral equations of Volterra of the second kind and all
continuous functions ŵmi

(s), i = 1, N , are uniquely determined. Substitution into
the left-hand side of (13) uniquely determines the desired vector-function w(t) =
(w1(t), . . . , wN (t))T by formula

w(t) = D−1ŵ(t),
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where D = [djmi
]Ni,j=1, and det D 6= 0 determined by condition. To complete the

proof, it remains to note that, in view of the estimates for the coefficients |cn|, |djn|,
which are valid by virtue of the introduced smoothness requirements for the functions
f(x), dj(x), the Fourier series (7), representing the desired solution u(x, t), converges
uniformly together with the derivatives up to the second order. All functions wj(t)
in the expression for the external force are uniquely determined, the solution (7) is
classical. The theorem is proved.

Example 1.















∂2u
∂t2

= ∂2u
∂x2 + sin xw(t),

u(0, t) = u(π, t) = 0, u(x, 0) = ∂u(x,t)
∂t

∣

∣

∣

∣

t=0

= 0,
∫ π

0 sin x dx = π
4 t2.

(15)

The function w1(t) is the desired function. In this example, N = 1, l = π,
L1(x) = sin x, ∆(t) = π

4 t2. Therefore, in this example, the equation (14) has the
form

∫ π

0
sin2 x ds

∫ t

0
sin(t − s)w1(s) ds =

π

4
t2.

To calculate the function w1(t), we obtain the integral equation which obviously has
a unique solution w1(t) = 1 + t2/2.

Remark 2. The solution of the integral equations (14) also in the general case is easy
to construct explicitly, reducing them to integral Volterra equations of the second

kind with kernels of the form cos A(t − s). In our case A = {
πmia

l
, i = 1, . . . , N}.

Indeed, the resolvent R(t− s) of such a kernel can be constructed explicitly from the

Laplace transform [2] by the formula R(t − s) =
aea(t−s) − beb(t−s)

a − b
, where a and b

are roots of the quadratic equation p2 − p + A2 = 0.

We note that the above results can be used in the formulation and solution
of certain problems of optimization by the boundary control of the oscillation
process [3].

Remark 3. The similar result is obtained in the problem of identifying the functions
wij, i = 1,M, j = 1, N , in the system

∂2u

∂t2
= A2 ∂u

∂x2
+ F (x, t), (16)

where A is a non-degenerate square matrix of dimension m × m, u = (u1(x, t), . . . ,
um(x, t))T , F = (F1(x, t), . . . , Fm(x, t))T , Fi(x, t) = fi(x) +

∑N
j=1 Cij(x)wij(t),

i = 1,M , under the local conditions

u(0, t) = u(l, t) = 0, (17)
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u(x, 0) =
∂u(x, t)

∂t

∣

∣

∣

∣

t=0

= 0, (18)

and nonlocal conditions

∫ l

0
Lij(x)uj(x, t) dx = ∆ij(t), (19)

for Lij(x) =
∑N

s=1 bijs sin
mjπx

l
, mj ∈ N. To determine the function wi,j(t) in the

external force F (x, t) representation in the system (3.1), we can construct systems
of Volterra integral equations. Approximate methods can be used to solve the cor-
responding integral equations, see, for example, [1, 7, 8].

2 Identification of a heat source dynamics in the heat equation

Consider the heat equation:

∂u

∂t
= a2 ∂2u

∂x2
+ F (x, t), x ∈ [0, L], 0 < t < ∞ (20)

with boundary conditions

u|t=0 = 0, (21)

u|x=0 = u|x=L = 0. (22)

The function F (x, t) characterizes the density of the heat source (heat release)
at the point x at time t. The initial boundary value problem (20)–(22) (see [1]) with
a known thermal source occurs in various fields of science and technology, including
heat power engineering, hydrology, materials science (see, for example, [15]), etc.
If F (x, t) is known, then the solution u(x, t) is constructed in closed form, see [16,
p. 214–215]. The problem of restoring the source function and other inverse heat
conduction problems has been discussed in recent years, see, for example, [10–12],
etc. In these papers, local initial and boundary conditions were used.

Following [10–12], we assume that the function of thermal sources F (x, t) can be
represented as the product f(x)w(t). For example, in the case when heat is released
as a result of the passage of a current of force I along a rod whose resistance is equal
to R, then F = 0.24I2R.

We assume that f(x) is a known function from C
′

[0,L], f(0) = f(l) = 0 and

w(t) is the desired one. We are studying the problem of determining the dynamic
characteristic of a heat source, i.e. function w(t).

For the purpose of uniqueness of the solution of the problem, we set the desired
averaged dynamics of temperature variation in a rod of length L by means of a
nonlocal boundary

∫ L

0
l(x)u(x, t)dx = g(t) (23)
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considering that
l(x) ∈ C

‘
[0,L], g(t) ∈ C

′

[0,T ], g(0) = 0

are given functions. Then condition (23) is nonlocal boundary condition, and w(t)
is the source control. We show that the problem of determining the function w(t)
reduces to the solution of the Volterra integral equations (VIE) of the first kind.
Indeed, according to [16, p. 183], we can construct a solution of problem (20)–(22)
in the form

u(x, t) =

∫ t

0

∫ L

0
G(x, ξ, t − τ)F (ξ, τ)dξdτ, (24)

where

G(x, ξ, t − τ) =
2

L

∞
∑

n=1

e−(πn
L

)2a2(t−τ) sin
πn

L
x sin

πn

L
ξ.

To determine the function w(t), we rewrite (24) in the form

u(x, t) =

∫ t

0

∫ L

0
G(x, ξ, t − τ)f(ξ)w(τ)dξdτ. (25)

Substituting the solution (25) into the boundary condition (23), we obtain

∫ t

0

∫∫ L

0
l(x)G(x, ξ, t − τ)f(ξ)dxdξw(τ)dτ = g(t)

Denoting

K(t − τ) :=

∫∫ L

0
l(x)G(x, ξ, t − τ)f(ξ)dxdξ,

we obtain a linear VIE of the first kind with respect to the desired control function
w(t):

∫ t

0
K(t − τ)w(τ)dτ = g(t). (26)

Let f(x) and l(x) be differentiable functions, and
∫ L

0 f(x)l(x)dx = C 6= 0. Sup-
pose that the given functions f(x) and l(x) and their derivatives have expansions in
uniformly convergent series

f (i)(x) =
∞

∑

n=1

an(sin
πn

L
x)(i), l(i)(x) =

∞
∑

n=1

bn(sin
πn

L
x)(i), i = {0, 1}.

Then the function K(t) will be a differentiable function, and K(0) = C 6= 0. If in
this case

g(t) ∈ C ′

(0,+∞), g(0) = 0,

∫ L

0
f(x)l(x)dx 6= 0,

then VIE (26) has a unique continuous solution, which in the general case can be
constructed numerically. For a numerical solution, we can use various regularization
methods, see [1,8]. For precise l(x), f(x), the form of the kernel in (26) is simplified,
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which allows us to obtain a solution of (26) in a closed form in a number of cases.
Indeed, let

f(x) =
∑

n∈I

an sin
πn

L
x, l(x) =

∑

n∈J

an sin
πn

L
x,

where I, J are finite sets of indices from N. We write down the kernel of equation
(26) in the form

K(t − τ) =
2

L

∫∫ L

0

∞
∑

n=1

e−(πn
L

)2a2(t−τ)l(x)f(ξ) sin
πn

L
x sin

πn

L
ξdxdξ.

As
∫ L

0
sin

πn

L
x sin

πm

L
xdx =

{

0 if n 6= m.
L
2 n=m.

then in the corresponding VIE we get the kernel in the form of a sum of exponentials:

K(t − τ) =
L

2

∑

n∈I
⋂

J

e−(πn
L

)2a2(t − τ)anbn.

If in this case
L

2

∑

n∈I
⋂

J

anbn 6= 0, (27)

g(t) is differentiable, g(0) = 0, then the corresponding VIE (26) will have a unique
solution. This solution can be obtained numerically or analytically using the Laplace
transform. Sometimes, the proposed method makes it possible to obtain a solution
in a closed form.

Example 2. Let us consider the case when

l(x) = sin
πmx

L
.

Suppose that in this case
∫ L

0
f(ξ) sin

πm

L
ξdξ 6= 0.

In this example, we get the kernel

K(t − τ) = e−(πn
L

)2a2(t−τ)

∫ L

0
f(ξ) sin

πm

L
ξdξ.

We introduce the notation C :=
∫ L

0 f(ξ) sin πn
L

ξdξ. Thus, in the case of a nonlocal
boundary condition (23) with known function l(x) = sin πmx

L
we obtain the simplest

VIE of the first kind with respect to w(t):

C

∫ t

0
e−(πm

L
)2a2(t−τ)w(τ)dτ = g(t). (28)
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Consequently, when g(t) ∈ C ′

[0,+∞), g(0) = 0 in this example, the heat source control

function w(t) is defined by the formula:

w(t) =
1

C

{

g′(t) +
(πm

L

)2
a2g(t)

}

. (29)

The corresponding solution (temperature at a point with coordinates x at time t)
for a particular component f(x) of a thermal source is determined by formula (25)
using solution (29).

If the functions f(x) and l(x) do not have the required smoothness, then the
impulse control and the generalized solution of the problem (20)–(23) can be con-
structed by the approach described in [7].
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