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Regularized gradient-projection algorithm for solving
one-parameter nonexpansive semigroup, constrained
convex minimization and generalized equilibrium
problems

C. C. Okeke, O.T. Mewomo

Abstract. Our purpose in this paper is to propose an iterative algorithm for finding
a common element of the fixed points set of common solutions of a one-parameter non-
expansive semigroup, the set of solutions of constrained convex minimization problem
and the set of solutions of generalized equilibrium problem in a real Hilbert space
using the idea of regularized gradient-projection algorithm under suitable conditions.
Finally, we give an application.
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1 Introduction

Let H be a real Hilbert space with norm ||.|| and inner product (.,.) and let C
be a nonempty, closed and convex subset of H. A mapping G : C — C is called
nonexpansive if

|Gz = Gyl < [lz —yll, Va,yeC. (1)

One parameter family of mappings 7 := {G(t) : 0 < t < oo} is called a continuous
Lipschitzian semigroup on C' if the following conditions are satisfied:

(1) G(0)x =« for all z € C
(2) G(s+t)=G(s)G(t) for all s,t > 0;

(3) for each t > 0, there exists a bounded measurable function L; : (0, 00) — [0, 00)
such that ||G(t)z — G(t)y|| < Lil|lx — y||, =,y € C;

(4) for each z € C, the mapping G(.)z from [0, 00) into C' is continuous.
A Lipschitzian semigroup 7 is called nonexpansive if L; = 1 for all ¢ > 0 and

asymptotically nonexpansive if limsupL; < 1. Let F(7) denote the common fixed
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point set of the semigroup 7 i.e. F(7) :={z € C: G(t)x = z,Vt > 0}.

We say that a mapping G : C — (' is said to be
(i) k-Lipschitz continuous if
|Gz — Gy|| < kllx —yl, Vo,yeC, k> 0;
(ii) monotone if
(Gx — Gy, x —y) >0, Vaeyel;
(iii) « - strongly monotone if there exists a constant o > 0 such that

(Gr — Gy,v —y) > allr —y||, Vz,y € C;

(iv) m- inverse strongly monotone if there exists a constant 7 > 0 such that

<G‘T - Gy7x - y> > 77HG$ - Gy”27 Vl’ay eC.

Let F': C' x C — R be a bifunction and ¢ : C — H be a nonlinear mapping. The
generalized equilibrium problem is to find x € C' such that

F(z,y)+ (Yz,y —2z) >0, VyeC. (2)

The set of solutions of generalized equilibrium problem (2) is denoted by GEP(F, ).
Thus
GEP(F, ) = {z € C: Fla,y) + (ba,y —2) >0, ¥ye Ch

In the case of ¢ = 0, problem (2) reduces to an equilibrium problem, which is to
find « € C such that

F(z,y) >0, VyeC (3)

and the set of solutions is denoted by EP(F'). Problem (2) includes, as a special case,
optimization problems, variational inequalities, minimax problem, Nash equilibrium
problem in noncooperative games, etc, (see for example, [2,12,14]). Several problems
in physics, optimization and economics can be reduced to generalized problem (2).
Some methods have been proposed to solve the generalized equilibrium problem,
equilibrium problem and related optimization problems (see, for example, [1,5,6,14,
16,18,19,22] and the references contained therein).

For solving the generalized equilibrium problem, the bifunction F : C' x C' — R
is assumed to satisfy the following conditions:

(Al) F(z,xz) =0 for all x € C;
(A2) F is monotone, i.e. F(z,y) + F(y,z) <0 for all z,y € C;

(A3) for each z,y,z € C, limy|o F(tz + (1 — t)x) < F(x,y);
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(A4) for each x € C, y — F(z,y) is convex and lower semicontinuous.

Let A : H — H be a single-valued nonlinear mapping and let M : H — 2H be a
set-valued mapping. The variational inclusion problem is to find w € H such that

0 € A(u) + M(u), (4)
where 6 is the zero vector in H. The set of solutions to variational inclusion (4) is
denoted by I(A, M). Consider the following constrained minimization problem:

i 5
min g(x) (5)

where g : C' — R is a real-valued convex and continuously Fréchet differentiable
functional. Assume that the constrained convex minimization problem (5) has a so-
lution, we denote the set of solutions of (5) by I'. The Gradient-Projection Algorithm
(GPA) generates a sequence {z,} according to the recursive formula

Tnt1 = Po(I — wmVg)x,, Yn >0, (6)

where the parameters 7, are real positive numbers, and Pg is the metric projection
from H onto C. It is well known that the convergence of the algorithms (6) is
determined by the gradient Vg and the metric projection onto C' If the gradient Vg
is only assumed to be inverse strongly monotone, then the sequence {z,} defined by
the algorithm (6) can only converge weakly to a minimizer of (5). If the gradient
Vg is Lipschitz continuous and strongly monotone, then the sequence generated by
(6) can converge strongly to a unique minimizer of (5) provided the parameters 7,
satisfy appropriate conditions.

In 2011, Xu [24] proposed average mappings to GPA, and he constructed a
counter-example which shows that the GPA does not have strong convergence in an
infinite-dimensional space. Moreover, he provided two convergent modifications of
GPA which are shown to converge in norm.

Also, in 2011 motivated by Xu, Cent et al.[4] presented the following iterative
algorithm:

Tnt1 = Po [Onvf(2n) + (I — OppuF)Tn(zn)], n >0, (7)

where f : C'— H is an [-Lipschitzian mapping with constant [ > 0, and F': C — H
is a k-Lipschitzian and 7-strongly monotone operator with constants k,n > 0. Let
0<p<2n/k?,0<~l<71and7=1-/1—pu2n— pk?). Let T,, and 6, satisfy
0, = %, Po(I — A\yVg) = 0,1 + (1 — 6,T,,). Under suitable conditions, it is
proved that the sequence {x,} generated by (7) converges strongly to a minimizer
x* of (6).

In 2012, Tian and Liu [11] introduced the following iterative method in a Hilbert
space: x1 € C' and

Tn

F(unvy)—l_ 1<y_un7un_xn>207 vyec) (8)
Tyl = Y f(up) + (1 — AT, (uyn), ¥YneN,
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where FF : C x C — R, up, = Q. (zp), Po(I — \yVg) = 0,1 + (I — 0,)T,0, =
%, and {\,} C (0,2/L, and {a}, {6}, {0n} satisfy appropriate conditions.
Furthermore, they proved that the sequence {z,} converges strongly to a point
q € I' N EP(F), which solves the variational inequality

(A=~f)g,q—2) <0, zel'NEP(F).

However, it is known that the minimization problem (5) has more than one
solution, so regularization is needed to find a unique solution. Now, consider the
following regularized minimization problem:

. R « 2}
min g (z) = min {g(z) + =]}
where o > 0 is the regularization parameter, g is a convex function with a 1/L-
ism continuous gradient Vg. Then the Regularized Gradient Projection Algorithm
(RGPA) generates a sequence {x,} by the following recursive formula:

Tn+1 = PC(I - ’YVgan)xn = Pc [mn - ’Y(Vg + an[)(xn)] ) (9)

where the parameter «,, > 0, 7 is a constant with 0 < v < 2/L, and P¢ is the
metric projection from H onto C. It is well known that the sequence {z,,} generated
by algorithm (9) converges weakly to a minimizer of (5) in the setting of infinite-
dimensional space (see [25]).

In 2010, Tian [23] combined the iterative methods of [13,26] to propose a general
iterative method for approximating a fixed point of a nonexpansive mapping T
defined on a real Hilbert space. Let f be a [-contraction on C with 0 < [ < 1,
and let S be n-strongly monotone and k-Lipschitzian. For a constant p satisfying
0 < pu < 2n/k?%, a constant t satisfying 0 < t < u(n — “7162)/1 = 7/l, then for xy € H,
define a sequence {z,,} recursively by

Tnt1 = aptf(xn) + (1 — apuS)Tx,, n >0, (10)

where F(T') denotes the fixed points of mapping T i.e, F(T) = {x € H : x = Tx}.
Recently, motivated by the works of Tian [23], Tian and Liu [11], Ming Tian and
Si-Wen Jiao [22] introduced a new iterative algorithm: z; € C' and

(11)

F(urwy) + %<y_un7un _$n> 2 07 Vy € 07
Tp+1 = antf($n) + (I - anNS)T)\n (Un), VneN,

for finding an element of I' N EP(F), where F : C x C — R, up, = Qr,(xn),
Po(I=~vVgy,) =Tx,, Var, = Vg+I,I,v € (0,2/L). Under appropriate conditions,
they proved that the sequence {z,,} generated by (11) converges strongly to a point
g € ' EP(F), which is also a solution to the variational inequality

(WS —tf)g,q—=2) <0, VzeI'NEP(F).
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In [18], Y. Shehu introduced an iterative scheme for finding a common element of
the set of common fixed points of a nonexpansive semigroup, the set of solutions of
a generalized equilibrium problem and the set of solutions of a variational inclusion
problem in a real Hilbert space. In particular, they proved the following theorem:

Theorem 1. Let C' be a nonempty, closed and convex subset of a real Hilbert space
H. Let F be a bifunction from C x C to R satisfying (A1)-(A4), ¥ a p- inverse-
strongly monotone mapping from C into H, A an a-inverse strongly monotone
mapping from C into H and M : H — 27 o mazimal monotone mapping. Let
7 : {G(u) : 0 < u < oo} be a one-parameter nonexpansive semigroup on H such
that Q := F(T)NI(A, M)NGEP(F,v) # ( and suppose f : H — H is a contraction
mapping with a constant v € (0,1). Let {t,} C (0,00) be a real sequence such that
lim,, oo t,, = 00. Suppose {x,} and {u,} are generated by x1 € H,

Tnit = B+ (1= B) (& Jy" Gl)lan f(@a) + (1 = @) Tar (= Adun)ldu)
(12)

for all n # 1, where {an}52, and {Bn}22, are sequences in (0,1) and
{rn}se, C (0,00) satisfying:

(Z.) lim,, .o Br = 0, ZZO:1 ’6714—1 - Bn‘ < 00
(ii) limy, oo 0ty = 0, D02 g = 00, o0 |1 — | < 00;
(111) X € (0,2al;

(iv) 0 < a<ry, <b<2pu, liminf, oory >0, D07 |rpg1 — 1| < 00;

. tn_tn* 1
(’U) limy, 00 tn - an(1—0n) =0

Then {x,}5° , converges strongly to z, where z :== Pqf(z).

In this paper, motivated by the works of Y. Shehu [18], Ming Tian and Si-Wen
Jiao [22] and ongoing results, we prove strong convergence theorems for finding a
common element of the set of common fixed points of a nonexpansive semigroup,
the set of solutions of a generalized equilibrium problem and the set of solutions of a
constrained convex minimization problem in a real Hilbert space. Our contribution
lies in the fact that our iterative method solves fixed point problem for nonexpansive
semigroup, generalized equilibrium problem and constrained convex minimization
problem at same time.

2 Preliminaries

Let H be a real Hilbert space and let C' be a nonempty, closed and convex subset
of H. For every point z € H, there exists a unique nearest point in C, denoted by
Pox, such that

|z — Pox|| < |lz—yll VyeC.
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Such a P¢ is called the metric projection of H onto C. It is well known that P is
a nonexpansive mapping of H onto C' and satisfies the following:

(x —y, Pox — Pcy) |Pcx — Poyl®, ¥ a,y € H; (13)
(r — Pox,y — Pcx) 0;
|z —yl|* > |lo — Poxl|* + |ly— Pex|’, YaeH,y €C.

>
<

Lemma 1. [4] The following inequality holds in an inner product space X :
lz +yl® < |z + 20y, 2 + ), VayeX.

Lemma 2. [9] Let T : C — C' be nonexpansive mapping with F(T) # 0. If {x,}22 4
is a sequence in C' that converges weakly to x and if {(I — T)zn}22, converges
strongly to y, then (I — T)x = y. In particular, if y = 0, then © € F(T).

Lemma 3. [20]. Let D be a nonempty, bounded, closed and convex subset of a real
Hilbert space H and let T := {G(u) : 0 < u < 00} a nonexpansive semigroup on D,

then for any h > 0,
G(h) (% /O t G(u)azdu) - <% /O tG(u)xdu)

Lemma 4. [2/]. Assume that {an}22 is a sequence of non-negative real numbers
such that

lim sup
t—00 zep

-0

An+1 < (1 - 5n)an + 5n0n + bna n = 07
where {yp,}22, and {b,}7>, are sequences in (0,1) and {5, }72 is a sequence in R
such that
(i) 2 nZg On = 003

(ii) either limsupo,, <0 or Y o2 dplon| < 0;

n—oo

(i) S°°° by < 0.

Then lim a, = 0.
n—oo

Lemma 5. [2]. Let F : C x C — R be a bifunction satisfying (A1)-(A4). Letr >0
and x € H. Then there exists z € C' such that
1
F(z,y) + ;(y—z,z—@ >0, VyeC.

Lemma 6. [8] Assume that F : C x C — R is a bifunction satisfying (A1)-(A4).
Forr >0 and x € H, define a mapping Q, : H — C as follows:

QT(:E):{ZGC’:F(z,y)%—%(y—z,z—aﬁ}20, VyGC’}.

Then the following hold:
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(1) Q, is single-valued;

(2) Q. is firmly nonexpansive, i.e. ||Q, — er||2 < AQrx — Qry,x — y) for any
z,y € H;

(3) F(Qr) = EP(F);
(4) EP(F) is closed and convez.

Lemma 7. [22] Let H be a real Hilbert space and C be a nonempty, closed and
convex subset of H. Let f : H — H be a contraction with constant | € (0,1), and
S : C — H be a k-Lipschitzian and n-strongly monotone operator with k > 0, n > 0.
Suppose that Vg is 1/L-ism continuous. Let Q,, be sequence of mappings defined
as in Lemma 2.6. Consider the following mapping X, on H defined by

Xn(z) = antf(x) + (I — apuS)Ty,Qr, (x), Yoz € H, neN,

where Po(I — yVagy,) = Th,, VgA = Vg+ M1, v € (0,2/L), {a,} C (0,1),
p e (0,2n/k?), 0 <t < pu(n— —)/l = 7/l. Then X,, is a contraction. i.e.

[ Xn(2) = Xn()ll < (1 = an(r —t)llz — .

3 Main Results

Lemma 8. Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let F : C x C — R be a bifunction satisfying (A1)-(A4), v : C — H be
a monotone mapping and let g : C — R be a real-valued convex function, and
assume that the gradient Vg is 1/L-ism with a constant L > 0. Let f : H — H
be a contraction with the constant 0 < | < 1 and let S : C — H be n-strongly
monotone and k-Lipschitzian. Fix a constant p satisfying 0 < p < 2n/k?, a constant
t satisfying 0 < t < p(n — —)/l =7/l. Let T := {G(u) : 0 < u < oo} be a one-
parameter nonexpansive semigroup on H such that Y := F(T)NTNGEP(F, ) # 0,
and {ty,} C (0,00) be a sequence such that lim, o t, = co. Suppose {x,}72, and
{un}>2, are generated by 1 € H as follows:

F(umy) + <¢$my - un> + %(y — Up, Up — xn> >0,VyedC;
Ty, (un) = Po(I — YV, )un;

Tn+1 = ﬂnxn 1 - ﬂn ( f()n antf(xn) (1 - Oén/LS)T)\n (un)]du)7
(14)

where up, = Qr, (n), Var, = Vg+ M\ I, T\, = Pc(I —vVgy,), v € (0,2/L). Let
{Bn}s {rn}, {an}, {\n} satisfy the following conditions:

(i) lim;, .o B = 0, 220:1 |ﬁn+1 - ﬁn| < 005

(ii) an C (0,1) limy oo oy =0, Y07 oy =00, D07 |apg1 — Q| < 005
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(Z”) {An} C (072/7 - L)7 >\n = O(an)7 Zzozl |>\n+1 - )\n| < o0

(iv) {rp} C (0,00), iminf, ooy >0, Y00 | |[Fpp1 — 7| < 00;

. tn—tn—
(v) im0 22t gy = 0,

Then {x, 31, {yn}, {un} and {i I G(u)yndu} are bounded.

Proof. First, we show that (I — yVg,,) is nonexpansive. For all z,y € C and
~v € (0,2/L), we have

(T =4Vgr)z — (T =V ul? = [z —y) = ¥(Vgr.z — Vary)|”

= |z —ylI> = 2v(x — v, Var,z — Vgr,y)
+92[Var,z — Vo yl?

IN

2y
e =ylI* = I Vor,z = Yo,y

+72Vgr, — Var, vl
2
lz —yll

9
+ (’y ~ E) Vg, z — Vo, yl?
|z —y|*. (15)

Next, we show that {z,} is bounded. Let p € F(T)NT N GEP(F,¢) # () and by
Lemma 6, we know that

[un = pll = 1Qr, (z0) = Qr, (DI < [lzn — plI- (16)

Now, let yp, := antf(zy) + (1 — anuS)Th, (uy), n > 1. So

IN

lyn =2l = llantf(zn) + (I — anpuS)Ty, (un) — pf
< (T = aqpS) Ty, (un) = (I — anpS) Ty, (p)]|
(I — anpS) Ty, (p) — (I — anpuS)T(p)|
Fant||f(zn) = f(P)|| + anlltf (zn) — nS(p)||
(1 = an7)llun — p| + [|Tx, (p) = T(p)||
+llanpSTy, (p) — cnpST (p)|
antl||zn — pl| + anl[tf(p) — nS(p)|
(1 = an(r = tl))||zn — pll
(anpk + DTy, (p) = T ()| + cwlltf(p) — nSP)|- (17)

IN

+ IN +

For z € C, note that
Po(I —~Vgy, )x =Ty, x

and
Po(I —4Vg)x =Tx.
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Then we get

[T,z =Tzl = |[Po(I =7Vgr,)z — Po(I =7Vg)z|
Any - (18)

It follows from (17) and (18) that

IN

lyn —pll < (1 —an(r —t))||lz, — pl
An (an,uk + 1)

n

+an (T — 1) [ tl 1S(p )H} (19)

From (14), we obtain

lznss —pl| = HB(% )+ (1= B,) (ti /Otn [G(w)yn — G(U)p]du> H

n

< Buallen —pll + (1 = Ba)llyn — pl
< Ballen —pll + 1 = Ba) (A = an(r = t))[|zn — pl|

Fon(l = B — 1) [2— (antth 2 10 4 111 @j:g‘f@”q
= [ = an(m = t)(1 = Bn)] zn - pl

+an(1 = Ba) (T —tl) B—Z (O‘"kar 1)y Ipll + Htf(pi:?lS(p)H} '

Since A, = o(ay, ), there exists a real number M; > 0 such that 3—2 < M;j. Thus,

[Tnt1 —pll < (1= an(r —t)(1 = Bn)] [|2n — pl
My (anpk + Dyllpll + (Itf () — pS(D)|l

tan(l = o) (r — tl) p—
< max { o~ pl, —; (b + Dol + 16 0) - w5 |
< max{ o~ pll —; Ok + Dl + 1676) = SN |

n > 1.

So, {z,,} is bounded. Hence, {y,}, {u,} and { Jo" G( yndu} are also bounded.
U

Lemma 9. Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let F : C x C — R be a bifunction satisfying (A1)-(A4), v : C — H be
a monotone mapping and let g : C — R be a real-valued convex function, and
assume that the gradient Vg is 1/L-ism with a constant L > 0. Let f : H — H
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be a contraction with the constant 0 < | < 1 and let S : C' — H be n-strongly
monotone and k-Lipschitzian. Fix a constant p satisfying 0 < p < 2n/k?, a constant
t satisfying 0 < t < p(n — —)/l =7/l. Let T := {G(u) : 0 < u < oo} be a one-
parameter nonexpansive semigroup on H such that Y := F(T)NTNGEP(F, ) # 0,
and {ty,} C (0,00) be a sequence such that lim, o t, = co. Suppose {x,}72, and
{un}2, are generated by (14). Then JLH;OHHJ"H_HJ"” =0 and Jl_{lgo”unﬂ_un” =0.

Proof. From (17), we have
Hyn - pH < (1 - an(T - tl))Hxn - p”

(7 — )= (My (s + Drllp] + 147 (5) — 1S )]

IA

I — pll + %ﬂ (M1 (g + 1] + 18 2) — nS @)1

waoc{ o =l (s -+ D1l + 16 0) o))

IN

_l’_

—— Mi(anpk + 1)y|pll + [Itf(p) — pSP)I)

< lon =l + = (M (o + Drlpl + 1£(p) — nS@)I)
Put D = {w € H : |w—p| < |z1-pll+:27 (Mi(anpuk + 1)yllp|l + (1t (p) — nS®)[)}-
Then D is a nonempty, bounded, closed and convex subset of H. Since G(u) is non-
expansive for any u € [0,00), D is G(u)-invariant for each u € [0,00) and contains
{yn}. Without loss of generality, we may assume that 7 := {G(u) : 0 < u < oo} is
a nonexpansive semigroup on D. By Lemma 3, we get

lim H< e yndu>—G(h) <ti tnG(u)yndu>

n—~o0 n 0

| —0, (20)

for every h € [0, 00). Furthermore, observe that

1 [t
[Tnt1 — G(R)Tpal] < ||Tng1 — ) G (w)yndu
1 [t L[t
+ |<— G(u)yndu> —G(h) <— G(u)yndu> H
tn 0 tn 0
1 [t
n J0O
1 [t
< 2 ‘ Tptl — — G(u)yndu
tn 0

+ ‘(i " G(u)yndU> - G(h) (i t" G(u)y"du> H

tn Jo tn Jo
I

Ty — — G(u)yndu
tn Jo

IN

2[n
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I
H( Gluniu) 60 (- [ Gluman)
n Jo
from lim 3, = 0 and (20), we get lim ||zp41 — G(h)zp+1]| = 0 and hence
lim ||z, — G(h)z,| = 0. (21)

Next, we show that ||zp,+1 — zn|| — 0, n — oo. Since Vg is 1/L-ism, Po(I —
Va,) = T),, so we have that

| Po(I —~Van,)tun—1— (I —yVgrn—1)tn_1]|

< I =9Vgn)un—1 — (I =YV, Jun—1]|
YIVg(tn-1) + An—1tn-1 — Vg(tn_1) — ApUp_1||
VA = An—tl[tn-1]-

1T, (un—1) = T, (un—1) |

Thus, we get

lyn = yn—1ll = l(antf(zn) + (I — anuS)Tx, (un) — (n-1tf(2n-1)

T = a1 S)Th,,_; (un—1)|

lantf(zn) — omt f(zn-1)|| + [[ant f(#n—1) — an-1tf (zp-1)]

(L — anpS) Ty, (un) — (L — anpS) Ty, (un—1)||

(I = anpS)Ty, (tn-1) = (I — ap_1S) Ty, _, (un—1)|

antl||zn, — Tp-1l| + tlan — an—1| | f(@n-1)ll + (1 = an7)[Jun — tn-1]|
F T, (tn-1) = T, (un—1)|

Hlap—1puST, _, (un—1) — anuSTy, (un—1)||
antl||zn — zn—1|| + t|an — an- 1‘ | f(@n—1)]
+ (14 an—1pk) || T, (un—1) = Tx,_, (un-1)||

+lan — an—1|.|ISTx, (un—1)| + (1 — anT)||un — up—1]|
antl||zn — Tn1 | + o — am_a |- () f (zn) ] + STy, (un-1)|)
+(1 — an7)|lun — up—1]|

+y(1 + pk) | Ay — Ap—t]fJun—1]|-

IN

IN

IN

IN

Since from Lemma 8, {uy}, {f(xn)} and {ST), (u,)} are bounded, then there exists
a constant My > 0 such that

My > max {y(1 + pk)l|un—1l, t|| f(@n)ll + pl|STy, (un-1)}, Vn>1.
Hence

Iyn = Yn-1ll < antll|zn — 2p-1|l + (1 — an7)|lun — wn—1]]
+My(Jo, — an—1| + [An — An=1])- (22)
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From wup11 = @yt (Tng1) and u, = @y, (), we note that

1

n

and

F(un-l—la y) + <¢xn+17 Yy — un+1> + (y — Un41, Un+1 — xn+1> > 07 Vy e C. (24)

T'n+41
Putting y = uy, in (23) and y = uy,41 in (24), we have
1

F(un,un—i-l) + <¢$n,un+1 - un> + r_<un+1 — Up, Up — xn> >0
n

and
1

F(un-l—la un) + <¢xn+17 Up — un+1> + ﬁ(un — Un+1, Unt+1 — xn+l> Z 0.
n+

So, from (A2), we have

>0

Up — T, . Un+1 — xn+1>

(”L/Jﬂ?n_:,_l - ¢$n, Up — un+1> + <un+1 — Unp,
Tn Tn+1

and hence,

r

0 < <un - un—l—lyrn(T/)xn—H - ¢$n) + n (un—i-l - xn—i—l) - (un - $n)>

Tn+1

- <un+1 — Up, Up — Un+1 + <1 - Up+1 + (xn—l—l - anxn—}—l)

Tn41
)

> Up+1 — Tpt1) + ($n+1 — TpTpy1)

- (xn - anxn)

= <un+1 — Up, Up — Up+1 + <

—(xp — rnl/}a:n)>.

It then follows that

Tn41

Tn

— il + s — :cnn}

g1 — wn|® < |Jttngr — nl| {'1 -
Tn+1

and so we have

R \1 B T T T

Tn+1

Without loss of generality, we assume that there exists w € R such that r, > w > 0,
Vn > 1. Then

ltunt1 —unll < [lTas1 — 2nll + , 711 — Tl [[uns1 — Trga ||

n+1
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1
S ”xn—l—l - an + E’Tn—l—l - Tn’M?n (25)

where M3 := sup,,>q |[un — 2.
From (22) and (25), we get

lyn — yn—1ll < antlllzy — 2pal| + (1 — an7)|lun — un—1|
+M2(’)\n - )\n—l‘ + ‘an - an—l’)
< aptll|zn — Tp—1]|
1
+(1 - anT) <Hxn - xn—lH + E‘Tn - Tn—l‘M?))

+M2(’)\n — )\n—l‘ + ‘Oén — an_ll)

IN

M:
(1 = (7 = )llan =z | + = 2l = 7]

+M2(|)\n — )\n—1| + |Oén — Oén_1|). (26)

Let 2, := 7 fot” G(u)ypdu; n > 1. Then we have

lzn — 2n-1ll =
1 tn 1 1 tn—1 1 tn
1 / Gy — G () yn1]du + (— - > / dut 2 [ Gy dull.
tn 0 129 th—1 0 n Jtp_1
Given that

(L—3)b=—25 a,b#0;if p € Q, we can write

a

1

- /0 "Gl yn — G(w)yn_1)du

2 — zn—1ll =

(=) [ e - Gl - [ (6 - Gl

ty tp—1
Thus,

2ty —th—1
oo = el < o =l + (22 Y =gl )
n

Substituting (26) into (27), we obtain

M;
lzn — 2znall < (1 —an(r —th)||en — 21l + ?Vn — Tn—1]

+M2(|)\n - )\n—1| + |an - an—1|)
Nt —t,_
+<J————ﬂ)mm¢—m. (28)

tn

From (14), we have 2,41 = Bz, + (1 — 8,) 2, and this implies that

”xn—l—l - an = Hﬂnxn + (1 - ﬂn)zn - ﬁn—lxn—l - (1 - Bn—l)zn—lu
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= |[|Bn®n — Bn-1Tn—1 + BnTn—1 — BaZn-1(1 — Bn)2n

—(1 = Bn-1)2n-1+ (1 = Bn)zn—1 — (1 = Bn)zn—1|

Ballzn — zn-1ll + (1 = Bn)llzn — 2zn-1l|

+16n = Br—al(lzn-1ll + [lzn-1])- (29)

Using (28) in (29), we obtain

IA

|Znt1 —xnll < Bnllzn — zp-1l|

+(1 = Bn) [(1 — an (T = t)||zn — Tp-1|| + %\m — Tn—1]

20ty — tn—
FMn = et +lan = anal) 4 (222 gy = )
n

+1Bn = Br-al(l[en-1ll + l[2n-1l])

< (U= anlr — )1 )] n — 2a

T (oY I Y

#On = et + an = )+ (222 s =
< [ anlr — )1~ B)] o —

D[ = Tu-1] + 180 = Ba-al + (An = Ancal + o — an1])

+2‘tn — tn_lw 7
2

where D := max{sup, > (|zxl| + [|znl]), supu>1 lyn — pll, 22, Mo}, From Lemma 4
taking 0, = an (7 — tl)(1 — Bp), by, = M nd
0n = D(|rn = 1rn-1| + [Bn = Ba-1] + |An — )‘n 1|+ \Oén — ap—1]), by using conditions
(i)-(v), it follows that

Jim [l — 2l = 0. (30)

Since lim |r,4+ —7,| = 0, then from (25) and (30), we have that
n—oo
lim ||upt1 — uy|| = 0. (31)
n—oo

O

Lemma 10. Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let F : C x C — R be a bifunction satisfying (A1)-(A4), v : C — H be
a monotone mapping and let g : C — R be a real-valued convex function, and
assume that the gradient Vg is 1/L-ism with a constant L > 0. Let f : H — H
be a contraction with the constant 0 < | < 1 and let S : C — H be n-strongly
monotone and k-Lipschitzian. Fiz a constant p satisfying 0 < p < 2n/k?, a constant
t satisfying 0 < t < p(n — —)/l =71/l. Let T := {G(u) : 0 < u < o0} be a one-
parameter nonexpansive semigroup on H such that Y := F(T)NTNGEP(F, ) # 0,
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and {t,} C (0,00) be a sequence such that lim, .o t, = 0o. Suppose {x,}°2, and
{un}52, are generated by (14). Then lim ||u,—Th, (u,)|| = 0 and lim |y,—uy| = 0.
n—oo n—oo

Proof. From (14), (15) and (16), we obtain

v pl = [t 0 ([0~ G|
< Ballea = ol + (1= Ba)llgn = oI = Bullan — I
(1= B)llan(tf (2) = 1Sp) + (1 = anpsS)(Th, (un) = p) |
< Bullwn =l + (1 = B) [anlltf (@a) — nSpI?
+(1 = apS)|| T, () = p]
< Bulln =l + (1= B) [anlltf (@a) — uSp|?
+L = aS) =9l 47 (7= 2 ) 1900, 02) = Vo0l
< Bullan = pI + (1= Bo) [anlltf (@a) = nSp|”
+0 = asS) o =9l 47 (7= 7 ) 1900, (0r) = T, 00
< lan = plI? + anlltf (za) — nSpll?

2
#1 (1= 2) 19000 = Vol

Therefore we have

2
1 (1= 2) 190 ) = Tl < Nl = 91 = s — I
+an[tf(zn) — NSPH2
< s — 2l — I+ s — o)

+om|[tf(zn) — NSPH2'

Since lim a,, = 0 and lim ||zp4+1 — 2| = 0 by Lemma 9, we obtain
n—oo n—oo

lim [[Vgx, (un) = Vax,pll = 0.
n—oo
From (14), we obtain (noting that (I —yVg,, ) is nonexpansive)

Ty, (un) — p|? |Po(I —Vgx, )un — Po(I —vVgrn)p|?

[((un —YVgr,un) — (0 — YV gr,p), Ta, (tn) — )]

IA

5 [1(n = YVgr,un) = (0 = YVor, P + [T, (un) — pl*

~l(un = ¥990,) = (0 = 1V gr,) — (T, (un) = 9]
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1
< 5[l =l + 173, (1) = pI?
HI(n = T, () = V(Vgr,tn = Vor,p)lI?
1
< 5|l =PI + 1T, (1) = I =l = T, (1)
2 2
So, we have
1T, (un) = pI* < flun = Pl = 1T, () = (32)

+29(tn — T, (un), Vo, tn — Var,p) — VIV gr,un — Vor,pl>-

From (14) and (32), we have
\ Bulen —p) + (1— ) (; [ 6t - G(u)p}du)

Buallzn = pI* + (1 = Ba)llgn — pI”
Ballen = pII* + (1 = B) (anlltf (@n) = uSpI” + (1 = anpuS) T, (un) = o)

Bulln _p”2 +anlltf(zn) — NSP||2

+(1 = Ba)llun = plI* = 175, (n) = un?

+27(tp — Tx, (un), Vgr, tn = V9r,0) = ¥ Vor, un — Vg, pl’]
Bulln —p||2 +anlltf(zn) — NSp”z

+(1 = Ba)llzn — pI* = [T, (un) — un?

+29(up — Tx, (un), Vga, un — Vgr,p) — 72V, un — Vor, ]
[2n = pII* + [t f (2n) — pSPI* = (1 = Ba)llun — T, (un)|®

1 2

2
[2nt1 = pll

IN A

IN

IN

IN

+2(1 = Bu)vllun = T, (un) [l Vgr, tn = Vg, pl|- (33)

From (33), we have

(1= B)llun = Ta, (w)I* < N = pl* = lansr = plI* + anlltf (20) — pSpl?
+29([un = T, () [[Var, un = Vg, pl-

Since lim ||z, 41 —xy| = 0 by Lemma 9, lim a,, = 0 and lim [|Vgy, un — Vg, pl| =
n—oo n—oo n—oo

0, we obtain
lim (1 — Bn)|un — T, (un)| = 0.

n—oo

Since lim £, = 0, we obtain
n—oo

lim ||w, — Ty, (us)|| = 0. (34)

From y, = antf(z,) + (1 — anuS)Th, (un), we obtain y, — T, (un) = ap (tf () —
wSTy, (un)). So,

lyn = T, (un) |l = owl|(tf (2n) — pSTy, (un))|| — 0, as n — oo. (35)
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Next we show that lim ||u, — z,| = 0. Indeed, for any p € F(7)NT' N EP(F), by
n—oo

Lemma 6 we have

l|wn —

This implies that

pl® 1Qr, (zn) = Qr, (DI

< (rp —poun —p)
1 2 2 2
= §(H$n—p” —I—Hun—pH —Hun—an )
[un —plI> < N2 = plI* = llun — 2al*. (36)

Then, from (18) and (36), we derive that

g —plI> = llamtf(zn) + (I — npS) Ty, (un) — |

< [((1 = anT)lun = pll + antl||z, — pl)
+(Any(1 + anpik)l|pll + e lltf (p) — 1S (p)I)]
un = plI* + (@21 + 20tl) ||z, — pl|?
X2V (L + apk)?(|p)|* + o[t £(p) — nS(p)|®
+2X (1 + an) Pl [t f (20) — 1S (p) ||
20y (L 4+ t) (1 + anpik) |20 — pl|-[Ip|l
+2a, (14 th) ||z — pll-Itf(p) — nS®)|l

(1 + antl)?[|zn — plI* = [t — x|

X272 (1 + o pik)?|Ip))* + a2 ILf (p) — pS(p)II?
20y (1 + an) Pl It f (2n) — uSO)||
+2Ay (1 + ) (1 + anpk)||zn — pll.[|p|l
+200, (1 + t) |2 — pll-l[tf (p) — nS(P)]- (37)

IN

IN

From (14) ,(37) and by the convexity of ||.||%, we obtain

|Zn+1 — p”2 =

IN

IN

Thus, we get

(1 = Bn)llun — 517n||2

1 [t ?
|6t =)+ (1= ) (- [ 16w, ~ Gluplan

n JO
Bullzn — pH2 + (1= Bu)llyn — pH2
Bulln = pI* + (1 = Bn) | (1 + ant])? 2 — p]”
—lun — an2 + )‘3172(1 + anuk)szHz
+ap|tf(p) = wSP)II* + 22Xy (1 + an)|p|l |1t f (2n) — 1S (p)ll
+2Xy(1 + ) (1 + anpk)||zn — pll.|p] (38)

20 (14 H) [ — |l 1 (p) — 1S ()]

< Bullwn = plI* + (1= Ba) [(1 + anth)?zn = pl* = llzns1 — pll?
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FA292(L + anpk)?(|pl|* + 21t (p) — uS(p)||”
F2X (1 + any)|Ipll [t f (2n) — S (p)||
22,y (1 + 1) (1 4 an k) ||, — pl|.||p]|

+20, (1 + t) ||z — pll-lItf (p) — S|

Since {z,} is bounded by Lemma 8, o, — 0, 5, — 0, A, — 0, n — oo and
|Zn+1 — zn|| — 0 by Lemma 9, we have

lim |u, — x,|| = 0. (39)

n—oo

Furthermore, from (34), (35), (37) and for every h € [0, 00), we have that

IG(R)yn — G(R)znl| < [lyn — zall
< lun = @l + Jun = T, (wn) || + | T, (wn) — ynll — 0, (40)

as n — oo. Hence, from (21) and (40), we obtain
1G(M)yn = znll < G(R)yn — G(R)znl + [[G(h)2n — 2|l — 0, n — oo
Also, we have that
[2n =T, (un) |l < lzn = unll + [lun = T, (un)[| = 0, n — oc.
Hence, for every h € [0,00) we have that

I1G(M)yn —yull < NG(M)Yn — zull + 20 — T, (un)]|
+ [ Tx, (un) = ynll — 0, n — oo. (41)

Next, we show that ||z, — Ty, (x,)|| — 0, n — oco.

|zn — Ty, (@)l = |vn — up +up — Ty, (un) + Ty, (un) — Ty, (un) — Ty, (7) ]
< lwen = unll + Jun — T, (un) | + 1T, (un) — T, (z0)]|
< lwen = unll + un — T, (un) || + llun — 2]

From (34) and (39), we have
[#n — T, (zn)]| = 0, n — oc.
From (34) and (35), we obtain that

lyn — unll < lun — T, (un)ll + [[yn — T, (un)|| — 0, n — oo. (42)
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Lemma 11. Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let F : C x C — R be a bifunction satisfying (A1)-(A4), v : C — H be
a monotone mapping and let g : C — R be a real-valued convex function, and
assume that the gradient Vg is 1/L-ism with a constant L > 0. Let f : H — H
be a contraction with the constant 0 < | < 1 and let S : C — H be n-strongly
monotone and k-Lipschitzian. Fix a constant p satisfying 0 < p < 2n/k?, a constant
t satisfying 0 < t < p(n — ”Tkz)/l =71/l. Let T := {G(u) : 0 < u < oo} be a one-
parameter nonexpansive semigroup on H such that Y := F(T)NTNGEP(F, ) # 0,
and {t,} C (0,00) be a sequence such that lim,, . t, = co. Suppose {x,}°2, and
{un}52, are generated by (14). Then

limsup(y, — 2, —(uS — tf)z) <0,

where z = Py(I — pS +tf)z.

Proof. Now if we take a subsequence {y,, } of {y,} such that

lim sup(y, — z, —(uS — tf)z) = limsup(y,, — 2, —(uS —tf)z), (43)

n—~o0 n—oo

by (42) and y,, — ¢, we have that u,, — ¢. Note that

[ —T'(un) || [un — T, (un)[l + [T, (un) — T'(un)|

<
< lun =T, (un) [ Ay [fun

Hence, by using the fact that ||u, — Ty, (u,)|| — 0 by Lemma 10 and A, — 0, we
get ||up, — T'(uy)|| — 0. From Lemma 2 we get ¢ € F(T) = I'. Next, we show that
q € GEP(F,v). Since u, = Q,, T, for any y € C, we obtain

1
F(Umy) + (T/JJme - un> + T_<y — Up, Up — xn> 2 0.

n

Furthermore, replacing n by n; in the last inequality and using (A2), we obtain

1
(wnj,y—unj)+r—<y—un,un—:ﬂn> > F(y, un,;). (44)

nj

Let z; ==ty + (1 —t)q for all t € (0,1] and y € C. This implies that z; € C. Then,
by (44), we have

Up, — Tn,;
<Zt - unj ) ¢2t> 2 <Zt - unj ) ¢2t> - <Zt - uujawxnj> —\ %t unju N + F(Ztu u’ﬂj)
T
nj
= <Zt - ’Lbnj ) 1/}Zt - 1/}unj> + <Zt - unjkunj - 1/)Inj>

_<Zt_un]‘7M>+F(zt7unj)' (45)
'f'nj

Since lim [[zy,; — up,|| = 0, we have lim [[¢x,; — tuy,| = 0. Furthermore, by the
j—00 j—00

monotonicity of 1, we obtain (z; — up,, ¥z — uy,;) > 0.
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Since lim ||y, —upn, || = 0 and lim y,,. = g, we obtain that lim w,, = ¢. Then, using
j—00 J J j—o00 J j 5500 7

assumption (A4) in (45), we obtain
(Zt - Q7wzt> 2 F(Zt7Q)7 j — OQ. (46)
Using (A1), (A4) and (46), we also obtain

0

Fz,2) <tF(z,y) + (1= 1) F(z,q)
tF(ze,y) + (1 —t){ze — ¢, %)
tF (2, y) + (1 = )t{y — q,¥21)

IA A

and hence
0 < F(Zt,y) + (1 - t)<y - q7¢zt>‘
Letting t — 0 and using assumption (A3), we have, for each y € C,
0 < Flgy)+(y—avq). (47)

Hence ¢ € GEP(F, ).
Next, we show that ¢ € F(7). Assume that ¢ # G(h)q for some h € [0,00). Then
by Opial’s condition, we obtain from (41) that

lim inf lyn; —qll < lim inf [yn; — G(h)q]|
< liminf(lyn, — G(R)yn, Il +1G(R)yn, — G(h)ql)
<

liminf [y, — ql|.
j—o0

This is a contradiction. Hence, ¢ € F(7). Thus ¢ € T := F(T)NT' N GEP(F, ).
By (43) and property of metric projection, we obtain

limsup(yn — 2(uS —tf)z) = Iim {yn; — 2, (uS —tf)2)
= (y—=z (uS—tf)z) <0. (48)

O

Theorem 2. Let C' be a nonempty, closed and convex subset of a real Hilbert space
H. Let F : C x C — R be a bifunction satisfying (A1)-(A4), v : C — H be
a monotone mapping and let g : C — R be a real-valued convex function, and
assume that the gradient Vg is 1/L-ism with a constant L > 0. Let f : H — H
be a contraction with the constant 0 < 1 < 1 and let S : C — H be n-strongly
monotone and k-Lipschitzian. Fiz a constant p satisfying 0 < p < 2n/k?, a constant
t satisfying 0 < t < p(n — ”TI‘CQ)/Z =71/l. Let T := {G(u) : 0 < u < oo} be a one-
parameter nonexpansive semigroup on H such that Y := F(T)NTNGEP(F, ) # 0,
and {ty,} C (0,00) be a sequence such that lim, o t, = co. Suppose {x,}72, and
{un}o2, are generated by (14). Then {x,}°°, converges strongly to z, where z =
Pr(I —pS+tf)z.
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Proof. Now,

Yn — 2 = aptf(zy) + (I — anusS)Ty, (uy,) — 2
= ((I = anpS)(Th, (un) — (I — anuS)T, (2))
+((I = anuS)T, (2) = (I — anpS)T(2)
Fant(f(zn) = f(2)) + an(tf(q) — pS(2)).

So, from (16) and (18), we derive

lyn =217 = (I = anpuS) (T, (un) = (I = anpS)Tx, (2), yn — 2)

I = anpS) Ty, (2) = (I — anpS)T(2), yn — 2)
+ant(f(zn) = (@), Yn — 2) + an(— (S — tf)z,yn — 2)
(1 = an7)[lun — 2| lyn — 2|l

A YL+ anpk)||z]|.[[2n — 2] + antl||zn — 2| [[yn — 2]
+H(= (S = tf)z,yn — 2)

(1= an(r —th)|zn — 2| [lyn — 2]

FAY (L + anpk)||z]]-lyn — 2]l + (= (1S = tf)2z, yn — 2)

(1~ an(r — )5 (en — 2l + llgn — =)

IN

IN

IN

An
o (=S = 0F)zun = 2} 229(1+ ) el ~ 21

n
This implies that

1—ay(t—1t)

2
1+ ap(r—1t) |

lyn — 21" < [l —

200,

An
+m [<_(.US — tf)z,yn - Z> + a’y(l + O‘n#k)HZHHyn _ Z|]

< (U anlr =)l = 21 + gy [0S ~ 1)z =)
221 ) 1] (19)
Using (14) in (49), we obtain
2 L[ ’
feni =22 = 3=+ (1= (1 [ 6w - Glusliu)
< Ballan - ZH2 + (1= Ba)llyn — ZH2
< Ballan — 212+ (1= 8) (1 = an(r = ) — 2/

+ 2au,
1+ ap (17 —tl)

An
(1 ngak) 2] — 1))

[~ = t£)2,90 — 2)
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< 1= (1= Baan(r — t)]||lz, — 2|

200,(1 — )
T-an(r—t) (=(uS = tf)z,yn — 2)

A
+ (1 4 anpk) |2 lyn — 2]l
an

Since {y,} is bounded by Lemma 8, there exists a constant M > 0 such that
M > |yp — 2|, n>1
Then, we have that
lznr1 —21* < (1= 8n)llzn = 2II* + anon, (50)

where 0, := (1 — 3,)a, (7 — tl) and
o i= ool [(= (1S = £)2,yn — 2) + 229(1 + agah)| 21| M ]
By (48) and A, = o(a,), we get limsupo,, < 0. Now applying Lemma 4 to (50)

n—oo
we conclude that x, — z as n — oo. This completes the proof. O

Remark 1. Examples of sequences {a, }52 1, {Bn}o2q, {tn )22, {rn}o2y and { A, }02,
in Theorem 2 are

1 1 n 1
— =, lIp= =— A= > 1.
I 571 (n+1)%7 n n7 Tn n+17 n n_

On = P

1
n4

Corollary 1. Let C be a nonempty, closed and conver subset of a real Hilbert space
H. Let F : C x C — R be a bifunction satisfying (A1)-(A4), ¥ : C — H be a
monotone mapping and let g : C' — R be a real-valued convex function, and assume
that the gradient Vg is 1/L-ism with a constant L > 0. Let f : H — H be a
contraction with the constant 0 < 1 < 1. Let T := {G(u) : 0 < u < 0o} be a one-
parameter nonexpansive semigroup on H such that Y := F(T)NTNGEP(F, ) # 0,
and {t,} C (0,00) be a sequence such that lim, .o t, = 0o. Suppose {x,}°2, and
{un}52, are generated by x1 € H as follows:

F(umy) + <¢xmy _un> + %<y — Un, Unp — $n> > O,V RS O;
T, (un) = Po(I — Vg, )un; (51)
Tng1 = Ban + (1 - ﬂn) <i fon G(u) [anf(xn) + (1 - an)T)\n (un)]du>7

where up, = Qr, (Tn), Var, = Vg+ I, Ty, = Pc(I —vVgy,), v € (0,2/L). Let
{Bn}s {rn}, {an}, {\n]} satisfy the following conditions:

(i) lim,, .o Br = 0, ZZO:1 ’ﬂn—i—l - ﬂn‘ < 00

(ii) an C (0,1) limy oo oy =0, Y07 oy =00, D07 |apg1 — Q| < 005
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(Z”) {An} C (072/7 - L)7 >\n = O(an)7 22021 |>\n+1 - /\n| < o0

(iv) {rp} C (0,00), iminf, ooy >0, Y00 | |Fpp1 — 7| < 00;

: tn—tn
(v) limy, o0 2= an(ll—ﬁn) =0.

Then {x,}5° | converges strongly to z, where z := Py f(z).

4 Application

Consider the problem of finding a zero of maximal monotone operator in a Hilbert
space H. It is well known (see [3]) that the initial value problem

du(t)
dt

+ Au(t) 30 for every t >0, u(0) ==z,

for any x € D(A) has a unique solution u : [0,00) — H and D(A) is closed and
convex. Putting G(t)z = u(t), we have that the family of mappings 7 = {G(¢t) : 0 <
t < oo} of D(A) onto itself is a one-parameter nonexpansive semigroup on D(A).
Moreover, we know from [3] that A=0 = F(7). So, we can apply our Theorem 2 to

find zero of A with H = D(A). Then the method (14) has the form z; € H,

Yn = (1 — an)an,
Tnit = (1= Bu)an + Bo (£ 3" Gls)ynds) , n = 1.
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