Corrigendum to "The multiplicative Zagreb co-indices on two graph operators" Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, no. 2(81), 18-26.

Ashish Kumar Upadhyay, Sayantan Maity, Sk Rabiul Islam

Abstract. There is an error in the statement of Theorem 1 in the paper [1]. We give the correct statement and proof of the theorem.

Mathematics subject classification: 05C05, 05C07, 05C90, 05C20. Keywords and phrases: Multiplicative Zagreb co-indices, Subdivision graph, Zagreb indices.

We follow the notations and symbols of [1]. In [1] in Theorem 1 the authors state that

 $\overline{\prod}_{1}(T_{n,k}) = (2^{n^{2}+k^{2}+2nk-7n-7k+16})(5^{n+k-5})(3^{n+k-4}).$ Here we prove that $\overline{\prod}_{1}(T_{n,k}) = (2^{n^{2}+k^{2}+2nk-7n-7k+16})(5^{n+k-5})(3^{n+k-3}) \text{ for } k \ge 2 \text{ and}$ $\overline{\prod}_{1}(T_{n,1}) = (2^{n^{2}-5n+6})(5^{n-3})(3^{n-1}).$

Theorem 1. For the tadpole graph, the first multiplicative Zagreb co-indices satisfy the following equations:

$$\overline{\prod}_{1}(T_{n,k}) = (2^{n^{2}+k^{2}+2nk-7n-7k+16})(5^{n+k-5})(3^{n+k-3}) \text{ for } k \ge 2 \text{ and}$$

$$\overline{\prod}_{1}(T_{n,1}) = (2^{n^{2}-5n+6})(5^{n-3})(3^{n-1}).$$

Proof. Case 1: $k \ge 2$

The tadpole graph $T_{n,k}$ contains n+k-2 vertices of degree 2, one vertex of degree 3 and a pendent vertex. The subdivision graph $S(T_{n,k})$ contains n+k additional vertices of degree 2. In $T_{n,k}$, let v_l be a vertex of degree 3 and v'_1 and v'_{n-1} be the neighbors of v_l in the cycle C_n and v_k be the neighbor of v_l in the path P_{k+1} . Let v_1 be the pendent vertex in $T_{n,k}$. We calculate $\overline{\prod}_1 [d_G(u) + d_G(v)]$:

- 1. Among the vertices in C_n .
- 2. From cycle C_n to the path P_{k+1} .
- 3. Among the vertices in the path P_{k+1} .

Sub-case I. In C_n , v'_1 and v'_{n-1} are non-adjacent with n-3 vertices of degree 2. Remaining n-3 vertices in C_n are non-adjacent with n-4 vertices of degree 2 and one vertex of degree 3. Also v_l is non-adjacent with n-3 vertices of degree 2. Hence in C_n , $\overline{\prod}_1 [d_G(u) + d_G(v)] = (4^{n^2-5n+6})(5^{2n-6})$. Since one edge is shared between a pair of vertices, $\overline{\prod}_1 [d_G(u) + d_G(v)]$ in C_n is

[©] Ashish Kumar Upadhyay, Sayantan Maity, Sk Rabiul Islam, 2018

$$\overline{\prod}_{1}[d_{G}(u) + d_{G}(v)] = \{(4^{n^{2} - 5n + 6})(5^{2n - 6})\}^{(1/2)} = (2^{n^{2} - 5n + 6})(5^{n - 3}).$$
(1)

Sub-case II. From cycle C_n (where C_n is the cycle $(v_l, v'_1, v'_2, ..., v'_{n-1})$) to path P_{k+1} (where P_{k+1} is the path $(v_1, v_2, ..., v_k, v_l)$), all the n-1 vertices other than v_l in C_n are non-adjacent with $v_1, v_2, v_3, ..., v_k$. Also all of n-1 vertices except v_l in C_n are non-adjacent with k-1 vertices of degree 2 and one vertex of degree 1. Hence

$$\overline{\prod}_{1}[d_{G}(u) + d_{G}(v)] = (4^{(k-1)(n-1)})(3^{n-1}).$$
(2)

Sub-case III. In the path P_{k+1} , the vertex v_l is non-adjacent with k-2 vertices of degree 2 and one vertex of degree 1. The vertex v_k is non-adjacent with k-3 vertices of degree 2 and one vertex of degree 1. The vertex v_j is non-adjacent with k-4 vertices of degree 2 and one vertex of degree 1 and one vertex of degree 3 for $3 \leq j \leq k-1$. Also the vertex v_2 has k-3 non-adjacent vertices of degree 2 and one vertex v_1 has k-2 non-adjacent vertices of degree 2 and one vertex v_1 has k-2 non-adjacent vertices of degree 2 and one vertex of degree 3. The vertex v_1 has k-2 non-adjacent vertices of degree 2 and one vertex of degree 3. The vertex v_1 has k-2 non-adjacent vertices of degree 2 and one vertex of degree 3. Thus

$$\overline{\prod}_{1} [d_G(u) + d_G(v)] = (4^{k^2 - 5k + 8})(5^{2k - 4})(3^{2k - 4}).$$

Since one edge is shared between a pair of vertices,

$$\overline{\prod}_{1}[d_{G}(u) + d_{G}(v)] = (2^{k^{2} - 5k + 8})(5^{k-2})(3^{k-2}).$$
(3)

The product of equations (1), (2) and (3) implies that

$$\overline{\prod}_{1}(T_{n,k}) = (2^{n^2+k^2+2nk-7n-7k+16})(5^{n+k-5})(3^{n+k-3}).$$

Case 2: k = 1

The tadpole graph $(T_{n,1})$ contains n-1 vertices of degree 2, one vertex of degree 3 and a pendent vertex. Now we calculate $\overline{\prod}_1 [d_G(u) + d_G(v)]$. v_1 is adjacent with v_l and v_1 is non-adjacent with remaining n-1 vertices of degree 2. v_l is adjacent with

 v'_1 and v'_{n-1} (ignore v_1 as it is taken previous) and v_l is non-adjacent with remaining n-3 vertices of degree 2. v'_1 is adjacent with v'_2 (ignore v_l as it is taken previous) and non-adjacent with remaining n-3 vertices of degree 2 (ignore v_1 of degree 1 as it is taken previous). v'_2 is adjacent with v'_3 (ignore v'_1 as it is taken previous) and non-adjacent with remaining n-4 vertices of degree 2 (ignore v_1 of degree 1 and v_l of degree 3 as it is taken previous). For v'_3 , v'_4 ... v'_{n-3} it is similar.

$$\overline{\prod}_{1} [d_{G}(u) + d_{G}(v)] = (5^{n-3})(3^{n-1})(4^{n-3}4^{n-4}4^{n-5}...4^{1}) = (2^{n^{2}-5n+6})(5^{n-3})(3^{n-1}).$$

References

 DELDAR M., ALAEIYAN M. The multiplicative Zagreb co-indices on two graph operators. Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, no. 2(81), 18–26.

ASHISH KUMAR UPADHYAY, SAYANTAN MAITY, SK RABIUL ISLAM Indian Institute of Technology Patna Department of Mathematics Patna, India 801103 E-mail: upadhyay@iitp.ac.in, sayantan.pma17@iitp.ac.in, sk.pma16@iitp.ac.in Received April 20, 2018