Corrigendum to "The multiplicative Zagreb co-indices on two graph operators" Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, no. 2(81), 18-26.

Ashish Kumar Upadhyay, Sayantan Maity, Sk Rabiul Islam

Abstract

There is an error in the statement of Theorem 1 in the paper [1]. We give the correct statement and proof of the theorem. Mathematics subject classification: 05C05, 05C07, 05C90, 05C20. Keywords and phrases: Multiplicative Zagreb co-indices, Subdivision graph, Zagreb indices.

We follow the notations and symbols of [1]. In [1] in Theorem 1 the authors state that

$$
\begin{aligned}
& \bar{\Pi}_{1}\left(T_{n, k}\right)=\left(2^{n^{2}+k^{2}+2 n k-7 n-7 k+16}\right)\left(5^{n+k-5}\right)\left(3^{n+k-4}\right) . \text { Here we prove that } \\
& \bar{\prod}_{1}\left(T_{n, k}\right)=\left(2^{n^{2}+k^{2}+2 n k-7 n-7 k+16}\right)\left(5^{n+k-5}\right)\left(3^{n+k-3}\right) \text { for } k \geq 2 \text { and } \\
& \bar{\prod}_{1}\left(T_{n, 1}\right)=\left(2^{n^{2}-5 n+6}\right)\left(5^{n-3}\right)\left(3^{n-1}\right) .
\end{aligned}
$$

Theorem 1. For the tadpole graph, the first multiplicative Zagreb co-indices satisfy the following equations:

$$
\begin{aligned}
& \bar{\Pi}_{1}\left(T_{n, k}\right)=\left(2^{n^{2}+k^{2}+2 n k-7 n-7 k+16}\right)\left(5^{n+k-5}\right)\left(3^{n+k-3}\right) \text { for } k \geq 2 \text { and } \\
& \bar{\prod}_{1}\left(T_{n, 1}\right)=\left(2^{n^{2}-5 n+6}\right)\left(5^{n-3}\right)\left(3^{n-1}\right)
\end{aligned}
$$

Proof. Case 1: $k \geq 2$
The tadpole graph $T_{n, k}$ contains $n+k-2$ vertices of degree 2 , one vertex of degree 3 and a pendent vertex. The subdivision graph $S\left(T_{n, k}\right)$ contains $n+k$ additional vertices of degree 2 . In $T_{n, k}$, let v_{l} be a vertex of degree 3 and v_{1}^{\prime} and v_{n-1}^{\prime} be the neighbors of v_{l} in the cycle C_{n} and v_{k} be the neighbor of v_{l} in the path P_{k+1}. Let v_{1} be the pendent vertex in $T_{n, k}$. We calculate $\bar{\Pi}_{1}\left[d_{G}(u)+d_{G}(v)\right]$:

1. Among the vertices in C_{n}.
2. From cycle C_{n} to the path P_{k+1}.
3. Among the vertices in the path P_{k+1}.

Sub-case I. In C_{n}, v_{1}^{\prime} and v_{n-1}^{\prime} are non-adjacent with $n-3$ vertices of degree 2. Remaining $n-3$ vertices in C_{n} are non-adjacent with $n-4$ vertices of degree 2 and one vertex of degree 3. Also v_{l} is non-adjacent with $n-3$ vertices of degree 2. Hence in $C_{n}, \bar{\Pi}_{1}\left[d_{G}(u)+d_{G}(v)\right]=\left(4^{n^{2}-5 n+6}\right)\left(5^{2 n-6}\right)$. Since one edge is shared between a pair of vertices, $\bar{\Pi}_{1}\left[d_{G}(u)+d_{G}(v)\right]$ in C_{n} is
© Ashish Kumar Upadhyay, Sayantan Maity, Sk Rabiul Islam, 2018

$$
\begin{equation*}
\bar{\prod}_{1}\left[d_{G}(u)+d_{G}(v)\right]=\left\{\left(4^{n^{2}-5 n+6}\right)\left(5^{2 n-6}\right)\right\}^{(1 / 2)}=\left(2^{n^{2}-5 n+6}\right)\left(5^{n-3}\right) . \tag{1}
\end{equation*}
$$

Sub-case II. From cycle C_{n} (where C_{n} is the cycle $\left(v_{l}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n-1}^{\prime}\right)$) to path P_{k+1} (where P_{k+1} is the path $\left(v_{1}, v_{2}, \ldots, v_{k}, v_{l}\right)$), all the $n-1$ vertices other than v_{l} in C_{n} are non-adjacent with $v_{1}, v_{2}, v_{3}, \ldots ., v_{k}$. Also all of $n-1$ vertices except v_{l} in C_{n} are non-adjacent with $k-1$ vertices of degree 2 and one vertex of degree 1. Hence

$$
\begin{equation*}
\bar{\prod}_{1}\left[d_{G}(u)+d_{G}(v)\right]=\left(4^{(k-1)(n-1)}\right)\left(3^{n-1}\right) \tag{2}
\end{equation*}
$$

Sub-case III. In the path P_{k+1}, the vertex v_{l} is non-adjacent with $k-2$ vertices of degree 2 and one vertex of degree 1 . The vertex v_{k} is non-adjacent with $k-3$ vertices of degree 2 and one vertex of degree 1 . The vertex v_{j} is non-adjacent with $k-4$ vertices of degree 2 and one vertex of degree 1 and one vertex of degree 3 for $3 \leq j \leq k-1$. Also the vertex v_{2} has $k-3$ non-adjacent vertices of degree 2 and one vertex of degree 3 . The vertex v_{1} has $k-2$ non-adjacent vertices of degree 2 and one vertex of degree 3 . Thus

$$
\bar{\prod}_{1}\left[d_{G}(u)+d_{G}(v)\right]=\left(4^{k^{2}-5 k+8}\right)\left(5^{2 k-4}\right)\left(3^{2 k-4}\right) .
$$

Since one edge is shared between a pair of vertices,

$$
\begin{equation*}
\bar{\prod}_{1}\left[d_{G}(u)+d_{G}(v)\right]=\left(2^{k^{2}-5 k+8}\right)\left(5^{k-2}\right)\left(3^{k-2}\right) . \tag{3}
\end{equation*}
$$

The product of equations (1), (2) and (3) implies that

$$
\bar{\prod}_{1}\left(T_{n, k}\right)=\left(2^{n^{2}+k^{2}+2 n k-7 n-7 k+16}\right)\left(5^{n+k-5}\right)\left(3^{n+k-3}\right)
$$

Case 2: $k=1$
The tadpole graph $\left(T_{n, 1}\right)$ contains $n-1$ vertices of degree 2 , one vertex of degree 3 and a pendent vertex. Now we calculate $\bar{\Pi}_{1}\left[d_{G}(u)+d_{G}(v)\right] . v_{1}$ is adjacent with v_{l} and v_{1} is non-adjacent with remaining $n-1$ vertices of degree 2. v_{l} is adjacent with

v_{1}^{\prime} and v_{n-1}^{\prime} (ignore v_{1} as it is taken previous) and v_{l} is non-adjacent with remaining $n-3$ vertices of degree $2 . v_{1}^{\prime}$ is adjacent with v_{2}^{\prime} (ignore v_{l} as it is taken previous) and non-adjacent with remaining $n-3$ vertices of degree 2 (ignore v_{1} of degree 1 as it is taken previous). v_{2}^{\prime} is adjacent with v_{3}^{\prime} (ignore v_{1}^{\prime} as it is taken previous) and non-adjacent with remaining $n-4$ vertices of degree 2 (ignore v_{1} of degree 1 and v_{l} of degree 3 as it is taken previous). For $v_{3}^{\prime}, v_{4}^{\prime} \ldots v_{n-3}^{\prime}$ it is similar.

$$
\bar{\prod}_{1}\left[d_{G}(u)+d_{G}(v)\right]=\left(5^{n-3}\right)\left(3^{n-1}\right)\left(4^{n-3} 4^{n-4} 4^{n-5} \ldots 4^{1}\right)=\left(2^{n^{2}-5 n+6}\right)\left(5^{n-3}\right)\left(3^{n-1}\right)
$$

References

[1] Deldar M., Alaeiyan M. The multiplicative Zagreb co-indices on two graph operators. Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, no. 2(81), 18-26.

Ashish Kumar Upadhyay, Sayantan Maity,

