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Properties of finite unrefinable chains

of ring topologies for nilpotent rings

V. I.Arnautov, G.N.Ermakova

Abstract. Let R be a nilpotent ring and let (M, <) be the lattice of all ring topologies
or the lattice of all ring topologies in each of which the ring R possesses a basis of
neighborhoods of zero consisting of subgroups. If τ0 ≺M τ1 ≺M . . . ≺M τn is an
unrefinable chain of ring topologies from M and τ ∈ M, then k ≤ n for any chain
sup{τ, τ ′

0} = τ ′

1 < τ ′

2 < . . . < τ ′

k = sup{τ, τn} of topologies from M.
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1 Introduction

After the problem of the existence of nondiscrete Hausdorff topologies in some
infinite rings was solved (see for example, [1, p. 351–390]) it was interesting to study
the lattice of all ring topologies and its sublattices.

It was proved (see [7]) that the lattice of all group topologies of an Abelian group
is modular.

As properties of finite unrefinable chains were well investigated in any modular
lattice (see, for example, Theorem 3.7), then for any Abelian group the properties
of finite unrefinable chains in any sublattice of the lattice of all group topologies are
well enough investigated.

Although the lattice of all ring topologies may be not modular (see [2]) it is
natural to study properties of finite unrefinable chains of ring topologies for some
rings.

The present work is a continuation of works [8 ] and [9] and is devoted to the
study of properties of finite unrefinable chains of ring topologies for nilpotent ring.

The basic results of work are Theorem 4.3 and Corollary 4.4 in which properties
of a unrefinable chains of ring topologies are proved when passing to the supremum.

For lattices of group topologies similar results are proved in [4].

2 Notations

In this work if another will be not stipulated we shall use the following notations:

2.1. N is the set of all natural numbers.
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2.2. R(+, ·) or simply R is a ring and R(+) is the additive group of the ring
R(+, ·).

2.3. By induction, for any natural number k we shall define the ideal Rk of the
ring R as follows:

Put R1 = R and take as Rk+1 the subgroup of the group R(+) generated by the

set
k⋃

i=1

(Ri · Rk−i+1).

By induction on number n it is easily checked that Rn is an ideal of the ring R.

2.4. If τ1 and τ2 are topologies on a set X then we shall consider, that τ1 ≤ τ2

if τ1 ⊆ τ2.

2.5. If (X,<) is a partially ordered set, S ⊆ X and a, b ∈ X, then:

– We consider that a = infXS if a ≤ x for any element x ∈ S and if d ∈ X is an
element such that d ≤ x for all x ∈ S, then d ≤ a;

– We consider that b = supXS if b ≥ x for any element x ∈ S and if d ∈ X is an
element such that d ≥ x for all x ∈ S, then d ≥ b.

3 Definitions and auxiliary results

3.1. Definition (see [3, 5, 6]). A partially ordered set (X, ¡) is called:

– A lattice if for any two elements a, b ∈ X there exist infX{a, b} and supX{a, b};
– A full lattice if for any nonempty subset S ⊆ X there exist infXS and supXS.

3.2. Remark (see [1], Theorem 1.2.5). Let R be a ring and Ω be a set of subsets
of the ring R such that the following conditions are true:

1. 0 ∈ V for any V ∈ Ω;

2. For any V and U from Ω there exists W ∈ Ω such that W ⊆ V
⋂

U ;

3. For any V ∈ Ω there exists U ∈ Ω such that −U ⊆ V and U + U ⊆ V ;

4. For any V ∈ Ω there exists U ∈ Ω such that U · U ⊆ V ;

5. For any V ∈ Ω and any element g ∈ R there exists U ∈ Ω such that g ·U ⊆ V

and U · g ⊆ V .

Then there exists the unique ring topology τ on the ring R such that Ω is a basis
of neighborhoods of zero in the topological ring (R, τ).

Remark 3.3. If I is some ideal of a ring R it is easy to notice that the set {I}
satisfies conditions 1 – 5 of Remark 3.2 and hence it sets some ring topology in the
ring R for which this set is a basis of neighborhoods of zero.

We shall denote this topology by τ(I).

3.4. Proposition. For any ring R the following statements are true:
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Statement 3.4.1. The set M of all ring topologies on the ring R is a full lattice;

Statement 3.4.2. The set G of all ring topologies on the ring R in each of
which the topological ring possesses a basis of neighborhoods of zero consisting of
subgroups of the group (R,+) is a full lattice.

Proof. Statement 3.4.1. In the beginning we shall show that there exists supMS
for any nonempty subset S ⊆ M.

For each ring topology τ ∈ S we shall choose some basis Ωτ of neighborhoods of
zero in the topological ring (R, τ) and also we shall consider the set Ω =

⋃
τ∈S

Ωτ . If

Ω̃ is the set of all finite subsets ∆ ⊆ Ω, then for every ∆ ∈ Ω̃ take W̃∆ =
⋂

V ∈∆

V .

It is easy to prove that the set Θ = {W̃∆|∆ ∈ Ω̃} satisfies conditions 1 – 5 of
Remark 3.2, and hence, there exists a ring topology τ∗ ∈ M on the ring R in which
the set Θ = {W̃∆|∆ ∈ Ω̃} is a basis of neighborhoods of zero.

As Ωτ ⊆ Θ for any topology τ ∈ S then τ ≤ τ∗ for any topology τ ∈ S.
Let now τ ′ ∈ M be a ring topology on ring R such that τ ≤ τ ′ for any topology

τ ∈ S.
Then any subset V ∈ Ω is a neighborhood of zero in the topological ring (R, τ ′).

If W̃∆ ∈ Θ, then W̃∆ is the intersection of finite number of sets from Ω, and hence,
it is a neighborhood of zero in the topological ring (R, τ ′).

Hence τ∗ ≤ τ ′.
So, we have proved that τ∗ = supMS.

Now show that there exists infMS for any nonempty subset S ⊆ M.
Consider the set S ′ = {τ ′ ∈ M|τ ′ ≤ τ for all τ ∈ S}. As the set S ′ contains the

anti-discrete topology then S ′ 6= ∅. Then, as it was proved above, in M there exists
τ̃ = supMS ′.

Show that τ̃ = infMS.
If τ ∈ S, then τ ′ ≤ τ for all τ ′ ∈ S ′. Then (see 2.5) τ̃ = supMS′ ≤ τ for all

τ ∈ S.
Moreover, if τ ′′ ≤ τ for all τ ∈ S, then τ ′′ ∈ S ′, and hence, τ ′′ ≤ supMS ′ = τ̃ .

Then τ̃ = infMS.
The Statement 3.4.1 is proved.

Proof. Statement 3.4.2. Let ∅ 6= S ⊆ G and τ∗ = supMS (see Statement 3.4.1).
As the intersection of any number of subgroups of the group (R,+) is a subgroup,

then any subset W̃∆ is a subgroup of the group (R,+), and hence, τ∗ ∈ G. As
G ⊆ M, then τ∗ = supGS.

So, we have proved that there exists supGS

Now show that there exists infGS for any nonempty subset S ⊆ G.
If S ′ = {τ ′ ∈ G|τ ′ ≤ τ for all τ ∈ S} then, similarly as in the proof of the s

Statement 3.3.1 it is proved that supGS
′ = infGS.

The Statement 3.4.2 is proved.
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3.5. Definition. (see [3], p. 15) Let A be a lattice and a, b ∈ A. If a < b

and between elements a and b there exist no other elements in the lattice A then we
shall say that the element b covers the element a in the lattice A, and we shall write
a ≺A b.

Notice that if A is a sublattice of a lattice (B, <) and a, b ∈ A, then from a ≺A b

does not follow that a ≺B b, but from a ≺B b it follows that a ≺A b.

3.6. Definition. As it is usual (see [3], [6]), a lattice A l is called a modular
lattice if the following condition is true:

If a, b, c ∈ A and a ≤ c, then supA{a, infA{b, c}} = infA{supA{a, b}, c}.

It is easy to notice that any sublattice of a modular lattice is a modular lattice.

3.7. Theorem. Let A be a modular lattice and a, b ∈ A. Then the following
statements are true:

Statement 3.7.1. If a = a1 ≺A a2 ≺A . . . ≺A an = b (i.e. this chain is a
unrefinable in the lattice A) then k ≤ n for any chain a = b1 < b2 < . . . < ak = b,
and k = n if and only if a = b1 ≺A b2 ≺A . . . ≺A ak = b (see [6], pp. 191 and 192);

Statement 3.7.2 . If a, b, c ∈ A and a ≺A b, then supA{a, c} �A supA{b, c}
and infA{a, c} �A infA{b, c} (see [5], p. 213, theorem 4).

3.8. Theorem. (see [8], corollary 16) Let R be a nilpotent ring (i.e. Rk = {0}
for some natural number k) and let A be the lattice M of all ring topologies, or it be
the lattice G of all ring topologies in each of which the ring R possesses a basis of
neighborhoods of zero consisting of subgroups.

If τ0 ≺A τ1 ≺A . . . ≺A τn (i.e. this chain of topologies is a unrefinable chain in
A) and τ ′

0 < τ ′
1 < . . . < τ ′

m is a chain of ring topologies from A such that τ0 = τ ′
0

and τ ′
m = τn, then m ≤ n.

3.9. Proposition. Let R be a ring, τ1 and τ2 be ring topologies on the ring R.
If Ω1 and Ω2 are some bases of neighborhoods of zero in topological rings (R, τ1) and
(R, τ2), accordingly, then the following statements are equivalent:

Statement 3.9.1. For any neighborhoods of zero V1 ∈ Ω1 and U1 ∈ Ω2 there
exist V2 ∈ Ω1 and U2 ∈ Ω2 such that V2 · U2 ⊆ U1 + V1 and U2 · V2 ⊆ U1 + V1;

Statement 3.9.2. The set Ω = {U + V |V ∈ Ω1, U ∈ Ω2} is a basis of neighbor-
hoods of zero of ring topology on the ring R;

Statement 3.9.3. The set Ω3 = {U + V |V ∈ Ω1, U ∈ Ω2} is a basis of
neighborhoods of zero in the topological ring (R, τ3), where τ3 = infM{τ1, τ2}.

Proof. 3.9.1 ⇒ 3.9.2.

It is obvious that for the set Ω conditions 1, 2, 3 and 5 of Remark 3.2 are true.

If W0 ∈ Ω then W0 = V0 + U0 where V0 ∈ Ω1 and U0 ∈ Ω2. There exist V1 ∈ Ω1

and U1 ∈ Ω2 such that V1 + V1 + V1 ⊆ V0 and U1 + U1 + U1 ⊆ U0 and there exist
V2 ∈ Ω1 and U2 ∈ Ω2 such that V2 · V2 ⊆ V1 and U2 · U2 ⊆ U1.
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As the Statement 3.9.1 is executed then we can assume that V2 ·U2 ⊆ V1+U1 and
U2 ·V2 ⊆ U1+V1. Then (U2+V2)·(U2+V2) ⊆ (U2 ·U2)+(U2 ·V2)+(V2 ·U2)+(V2 ·V2) ⊆

U1 + U1 + V1 + U1 + V1 + V1 = U1 + U1 + U1 + V1 + V1 + V1 ⊆ U0 + V0 = W0,

i.e. the Statement 3.9.2 is executed, and hence 2.9.1 ⇒ 3.9.2.

Proof. 3.9.2 ⇒ 3.9.3.
As the set Ω3 = {U + V |V ∈ Ω1, U ∈ Ω2} is a basis of neighborhoods of zero

of the ring topology τ3 on the ring R and as U ⊆ U + V and V ⊆ U + V for any
V ∈ Ω1 and U ∈ Ω2, then τ3 ≤ τ0 and τ3 ≤ τ1, and hence τ3 ≤ infM{τ1, τ2}.

Now we shall prove that infM{τ1, τ2} ≤ τ3.

Let W̃1 be any neighborhoods of zero of the ring (R, infM{τ1, τ2}) and let W̃2

be such neighborhoods of zero of the ring (R, infM{τ1, τ2}) then W̃2 + W̃2 ⊆ W̃1.
As τ1 ≤ infM{τ1, τ2} and τ2 ≤ infM{τ1, τ2}, then there exist V1 ∈ Ω1 and U1 ∈ Ω2

such that V ⊆ W̃2 and U ⊆ W̃2. Then U + V ⊆ W̃2 + W̃2 ⊆ W̃1, and as U + V ∈ Ω3

then infM{τ1, τ2} ≤ τ3, and hence infM{τ1, τ2} = τ3, i.e. the statement 3.9.3 is
executed, and hence 2.9.2 ⇒ 3.9.3

Proof. 3.9.3 ⇒ 3.9.1. Let V1 ∈ Ω1 and U1 ∈ Ω2. As Ω3 = {U + V |V ∈ Ω1, U ∈ Ω2}
is a basis of neighborhoods of zero of the ring topology τ3 then there exist V2 ∈ Ω1

and U2 ∈ Ω2 such that (U2 + V2) · (U2 + V2) ⊆ U1 + V1. Then
V2 · U2 ⊆ (U2 + V2) · (U2 + V2) ⊆ U1 + V1 and
U2 · V2 ⊆ (U2 + V2) · (U2 + V2) ⊆ U1 + V1.
Hence 3.9.3 ⇒ 3.9.1. Proposition is completely proved.

4 The basic results

4.1. Proposition. Let:
– R be a ring;
– M be the lattice of all ring topologies on the ring R;
– G be the lattice of all ring topologies on the ring R in which the ring R possesses

a basis of neighborhoods of zero consisting of subgroups of the group (R,+);
– τ1 and τ2 be ring topologies such that topological rings (R, τ1) and (R, τ2) possess

basis of neighborhoods of zero consisting of subgroups of the group (R,+).
If for any neighborhood V0 of zero in the topological ring (R, τ1) there exist neigh-

borhoods V1 and U1 of zero in topological rings (R, τ1) and (R, τ2), accordingly, such
that U1 · V1 ⊆ V0 and V1 · U1 ⊆ V0, then infM{τ1, τ2} = infG{τ1, τ2}.

Proof. Let Ω1 and Ω2 are bases of neighborhoods of zero in topological rings (R, τ1)
and (R, τ2) accordingly which consist of subgroups.

From Proposition 3.9 it follows that the set Ω3 = {V + U | V ∈ Ω1, U ∈ Ω2} is a
basis of neighborhoods of zero in the topological ring (R, infM{τ1, τ2}). As V + U

is a subgroup of the group (R,+) for any V ∈ Ω1, U ∈ Ω2, then infM{τ1, τ2} ∈ G,
and as G ⊆ M then infM{τ1, τ2} = infG{τ1, τ2}).

Proposition is completely proved.
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4.2. Theorem. Let R be a ring and let A be the lattice M of all ring topologies
or the lattice G of all ring topologies, in each of which the ring R possesses a basis
of neighborhoods of zero consisting of subgroups. If τ0 and τ1 are ring topologies
on R such that τ0 ≺A τ1 (the definition of ≺ see in 3.5) and supA{τ0, τ(Rk)} =
supA{τ1, τ(Rk)} for some natural number k, then the following statements are true:

Statement 4.2.1. If n = min{k|supA{τ0, τ(Rk)} = supA{τ1, τ(Rk)} then
τ0 = infA{τ1, supA{τ0, τ(Rn−1)}};

Statement 4.2.2. For any neighborhood V of zero in the topological ring
(R, τ1) there exist such neighborhoods V1 and W1 in topological rings (R, τ1) and
(R, supA{τ0, τ(Rn−1)} (definition of number n see in the formulation of the state-
ment 4.4.1), accordingly, that W1 · V1 ⊆ V and V1 · W1 ⊆ V .

Statement 4.2.3. For any neighborhood V of zero in the topological ring (R, τ1)
there exist such neighborhoods V1 and U in topological rings (R, τ1) and (R, τ0) ac-
cordingly, that U · V1 ⊆ V and V1 · U ⊆ V .

Statement 4.2.4. If τ ∈ A then supA{τ, τ0} �M supM{τ, τ1}.

Proof. Statement 4.2.1. From definition of the number n it follows that
supA{τ0, τ(Rn−1)} < supA{τ1, τ(Rn−1)}. Then

infA{τ1, supA{τ0, τ(Rn−1)}} ≤ supA{τ0, τ(Rn−1)} < supA{τ1, τ(Rn−1)},

and hence, infA{τ1, supA{τ0, τ(Rn−1)} < τ1.

So, we have received that τ0 ≤ infA{τ1, supA{τ0, τ(Rn−1)}} < τ1.
As τ0 ≺A τ1, then τ0 = infA{τ1, supA{τ0, τ(Rn−1)}.
Statement 4.2.1 is proved.

Proof. Statement 4.2.2. Let V be a neighborhood of zero in the topological ring
(R, τ1) and let V0 be a neighborhood of zero in the topological ring (R, τ1) such
that V0 · V0 ⊆ V . From definition of the numbers n it follows that there exists such
neighborhood U of zero in topological ring (R, τ0) that U

⋂
Rn ⊆ V0

⋂
Rn ⊆ V0.

There exists a neighborhood U1 of zero in the topological ring (R, τ0) and
there exists a neighborhood V0 of zero in the topological ring (R, τ1) such that
U1 · U1 ⊆ U and V1 ⊆ V0

⋂
U1. Then from proof of Statement 3.4.1 it fol-

lows that W1 = U1

⋂
Rn−1 will be a neighborhood of zero in the topological ring

(R, supM{τ0, τ(Rn−1)}.
As a · g ∈ Rn

⋂
U and g · a ∈ Rn

⋂
U for any elements g ∈ V1 and a ∈ W1, then

g · a ∈ V1 · (U
⋂

Rn−1) ⊆ V0 · V0 ⊆ V and a · g ∈ (U
⋂

Rn−1) · V1 ⊆ V0 · V0 ⊆ V for
any elements g ∈ V1 and a ∈ W1, i.e. W1 · V1 ⊆ V and V1 · W1 ⊆ V .

Statement 4.2.2 is proved.

Proof. Statement 4.2.3. Let V be a neighborhood of zero in the topological ring
(R, τ1). If V0 is a neighborhood of zero in the topological ring (R, τ1) such that
V0 + V0 ⊆ V , then from Statement 4.2.2 it follows that there exist neighborhoods
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V2 and W in topological rings (R, τ1) and (R, supA{τ0, τ(Rn−1)} accordingly, such
that W1 · V1 ⊆ V0 and V1 · W1 ⊆ V0. We can assume that V2 · V2 ⊆ V1. Then from
Statement 4.2.1 and Proposition 3.9 it follows that U = V2 + W1 is a neighborhood
of zero in the topological ring (R, τ0) and

U · V2 = (V2 + W1) · V2 = V2 · V2 + W1 · V2 ⊆ V1 + V1 ⊆ V

and

V2 · U = V2 · (V2 + W1) = V2 · V2 + V2 · W1 ⊆ V1 + V1 ⊆ V.

Statement 4.2.3 is proved.

Proof. Statement 4.2.4. Assume the contrary, i.e. that there exists a ring topology
τ ∈ A such that supA{τ, τ1} > τ ′ > supA{τ, τ0} for some ring topology τ ′ ∈ A. Then
τ ′ > τ and τ ′ > τ0. As τ0 ≤ inf{τ1, τ

′} ≤ inf{τ1, sup{τ, τ1}} = τ1 and τ0 ≺A τ1

then τ0 = inf{τ1, τ
′} or inf{τ1, τ

′} = τ1.

If τ1 = inf{τ1, τ
′} then τ ′ ≥ τ1 and as τ ′ > τ then τ ′ ≥ supA{τ, τ1}. We have

obtained the contradiction with the choice of the topology τ ′.

Hence τ0 = inf{τ1, τ
′}.

As τ ′ > supA{τ, τ0} ≥ τ0 then there exists a neighborhood U0 of zero in the
topological ring (R, τ ′) such that U0 is not a neighborhood of zero in the topological
ring (R, supA{τ, τ0}).

As τ ′ < supA{τ, τ1} then there exists a neighborhood V1 of zero in the topological
ring (R, τ1) and there exist neighborhoods W0, W1 and W2 of zero in the topological
ring (R, τ) such that V1

⋂
W0 ⊆ U0, W1 + W1 ⊆ W0 and W2 − W2 ⊆ W1.

As τ ′ > supA{τ, τ0} ≥ τ0 then any neighborhood of zero in topological ring
(R, τ0) is a neighborhood of zero in topological ring (R, τ ′). Then from Statement
4.2.3 and Proposition 3.9 it follows that V1 + W2 is a neighborhood of zero in the
topological ring (R, τ0) and hence (V1 + W2)

⋂
W2 is a neighborhood of zero in the

topological ring (R, supA{τ, τ0}).
If now r ∈ (V1 + W2)

⋂
W2 then r = v + w where v ∈ V1 and w ∈ W2. Then

v = r − w ∈ W2 − W2 ⊆ W1, and hence v ∈ V1

⋂
W1. Then

r = v + w ∈ (W1 + W1)
⋂

V1 ⊆ W0

⋂
V1 ⊆ U0.

From the arbitrariness of the element r it follows that (V1 + W2)
⋂

W2 ⊆ U0. As
(V1 + W2)

⋂
W2 is a neighborhood of zero in the topological ring (R, supA{τ, τ0})

then U0 will be a neighborhood of zero in the topological ring (R, supA{τ, τ0}). We
got a contradiction with the choice of the neighborhood U0.

Theorem is completely proved.

4.3. Theorem. Let R be a nilpotent ring and let A be the lattice M of all
ring topologies, or it be the lattice G of all ring topologies in each of which the ring
R possesses a basis of neighborhoods of zero consisting of subgroups. If τ ∈ A and
τ0 ≺A τ1 ≺A . . . ≺A τn (i.e. this chain of ring topologies is an unrefinable chain in



74 V. I.ARNAUTOV, G. N.ERMAKOVA

A) then m ≤ n for any chain of topologies τ ′
0 < τ ′

1 < . . . < τ ′
m of ring topologies

from A such that supA{τ, τ0} = τ ′
0 and τ ′

m = supA{τ, τn}.

Proof. From Theorem 4.2 it follows that the chain

supA{τ, τ0} ≤ supA{τ, τ1} ≤ . . . ≤ supA{τ, τn}

of ring topologies is an unrefinable chain in the lattice A and its length is not
greater than n. Then from Theorem 3.8 it follows that the length of the chain
τ ′
0 < τ ′

1 < . . . < τ ′
m is not greater tha n.

The Theorem is completely proved.

4.4. Corollary. Let:
– R be a nilpotent ring;

– A be the lattice M of all ring topologies or it be the lattice G of all ring topolo-
gies in each of which the ring R possesses basis of neighborhoods of zero consisting
of subgroups;

–τ ∈ A;

– τ0 ≺A τ1 ≺A . . . ≺A τn is an unrefinable chain of ring topologies in A:
τ ′
0 < τ ′

1 < . . . < τ ′
m is some chain of topologies from A.

If sup{τ0, τ} = τ ′
0 and τ ′

m = sup{τn, τ}, then m ≤ n, and m = n if and only if

τ ′
0 ≺A τ ′

1 ≺A . . . ≺A τ ′
m.

Really, as R is a nilpotent ring, then Rk = {0} for some natural number k, and
hence, sup{τ0, τ(Rk)} = sup{τ0, τ(0)} = sup{τ1, τ(0)} = sup{τ1, τ(Rk)}(τ1)|Rk .
Then from Theorem 4.6 the truth of the present corollary follows.
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