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Abstract. The average reward Markov decision problem with finite state and action
spaces is considered and an approach for determining the optimal pure and mixed
stationary strategies for this problem is proposed. We show that the considered prob-
lem can be formulated in terms of stationary strategies where the objective function
is quasi-monotonic (i.e. it is quasi-convex and quasi-concave) on the feasible set of
stationary strategies. Using such a quasi-monotonic programming model with lin-
ear constraints we ground algorithms for determining the optimal pure and mixed
stationary strategies for the average Markov decision problem.
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1 Introduction and problem formulation

In this paper we consider the average reward Markov decision problem for time
discrete systems with infinite horizon. The state and action spaces are assumed to
be finite. Our aim is to propose an approach for determining the optimal strategies
(policies) for an average Markov decision problem that is based on quasimonotonic
programming with linear constraints. We show that the considered problem can be
formulated in terms of stationary strategies where the objective function is quasi-
monotonic (i.e. it is quasi-convex and quasi-concave) on the feasible polyhedron set
of stationary strategies. So, we show that our decision problem can be represented
as a quasi-monotonic programming problem, and based on such a model we propose
algorithms for determining the optimal pure and mixed stationary strategies.

An average Markov decision problem is determined by the following elements:

— a finite set of states X;
— a finite set of actions A(x) for each state x € X;

— a transition probability function p: X x [[ A(z) x X — [0,1] that gives
reX
the probability transitions pj, from an arbitrary z € X to an arbitrary

y € X fora fixed action a € A(x), where > pi =1, Vz € X, a € A(z);
yeX
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— a step reward 7, , for each state z € X and every action a € A(z);

— a starting state zg € X.

The control process in the considered problem starts in the state xy at the moment
of time t = 0 where the decision maker selects an action ag € A(x,) and receives
the reward f(zg,ap). After that the dynamical system passes randomly to a state
y = 1 € X according to probability distributions p3o /, where z1 is reached at
the moment of time ¢t = 1. In general, at the moment of time t € {0,1,2,...} the
decision maker observes the state z; of the system and selects an action a; € A(zy).
After that he receiveds the reward f(z,a;) and the system passes randomly to a
state y = w41 according to probability distributions pg! . Such a process induces
a sequence of rewards f(zg,ap), f(x1,a1),..., f(x¢,a),... for which the average

reward per transition

t—1
1
Wy = tligloinf E (; Zf($77a7)> )
7=0

is gained. The aim of the decision maker is to determine a strategy of selection the
actions in the states that provides the maximal average reward per transition. A
strategy in a Markov decision problem is a mapping s’ that for every state z; € X
at the moment of time ¢ provides a probability distribution over the set of actions
A(z¢). If the probabilities in these distributions take only values 0 and 1, then s is
called a pure strategy, otherwise s is called a mized strategy. If these probabilities
depend only on the state z; = z € X (i. e. s does not depend on t), then s is called
a stationary strategy.

Let s be a stationary strategy applied by the decision maker. Then such a
strategy induces a Markov chain with probability transition matrix P°* = (pgys)
and the step rewards f(z,s) in the states x € X that can be determined as follows:

p;,y = Z Sz,yPx,y> V:E,y € X; f(l‘,S) = Z smﬂf(x,a),Vx e X.
a€A(x) a€A(x)

This means that if a stationary strategy s in the control process is applied then the
average reward per transition can be calculated by using the formula

me(S) = Z f(y7 S)q:io,yv

yey

where g3 , for z,y € X represents the elements of the limit matrix Q* = (q;y) for
the probability transition matrix P* induced by the strategy s.

It is well-known (see [8]) that for the average Markov decision problem with
finite state and action spaces an optimal strategy always exists and such an optimal
strategy can be found in the set of stationary strategies. Moreover, for the considered
problem there exists an optimal strategy that corresponds to a pure stationary
strategy that is an optimal one for an arbitrary starting state. Taking into account
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that the set of stationary strategies corresponds to the set of feasible solutions of
the following system

> Sga=1, Ve € X;
a€A(x) (1)
Sz,a > 0, Ve e X, Vae A(x),

where each extreme point of this set of solutions corresponds to a pure stationary
strategy then we can determine the optimal solution by calculating the average re-
ward for each extreme point of system (1) and selecting the best one. Obviously
such an approach is not convenient. Suitable algorithms for determining the opti-
mal strategies for the average decision problem based on linear programming and
algorithms based on value and policy iteration can be found in [3,8,9].

In this paper we propose an approach for determining the optimal strategies that
is based on quasimonotonic programming with linear constraints. We show that such
an approach allows us to ground new algorithms for determining the optimal solution
for the considered problem.

2 Preliminaries

In [8] it is shown that an optimal stationary strategy for an infinite horizon
average Markov decision problem with finite state and action spaces can be found
by solving the following linear programming problem:

Mazimize
@(aaﬁ) = Z Z Tz,aqz,a (2)

z€X acA(x)

subject to

Z Qy,a — Z Z pg,yaiﬂﬂzov Vy € X;

acA(y) z€X acA(x)
Z Qy.q + Z ﬂyﬂ - Z Z pg,yﬁl‘ﬂ = 9y7 Yy € X; (3)
a€A(y) a€A(y) z€X acA(x)

zq >0, ﬁy,a >0, Vxe X, a€ A(:E),

where 0, for y € X represent arbitrary positive values that satisfy the condition
> 0, = 1, where §, for y € Y are treated as the probabilities of choosing the
yeX
starting state y € X. In the case 6, = 1 for y = 29 and 0, = 0 for y € X \ {zo} we
obtain the linear programming model for an average Markov decision problem with
fixed starting state xg.

This linear programming model corresponds to the multichain case of an average
Markov decision problem. If each stationary policy in the decision problem induces
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an ergodic Markov chain then the restrictions (3) can be replaced by the restrictions

Z Qy.a — Z Z pg,yax,azoa vyEXa

a€A(y) z€X acA(x)
2 2 aya=1 (4)
yeX acA(y)

aye >0, YyeX, acAy).

In the linear programming model (2), (3) the restrictions

Z Yy,a + Z ﬁy,a - Z Z pg,yﬁm,a = 0y7 Vy eX
)

a€A(y) a€A(y z€X a€A(x)

with the condition ) 6, =1 generalize the constraint

yeX
Z Z Qya =1

zeX a€A(y)
in the linear programming model (2), (4) for the ergodic case.

The relationship between feasible solutions of problem (2), (3) and stationary
strategies in the average Markov decision problem is as follows:

Let (a, 3) be a feasible solution of the linear programming problem (2), (3) and
denote by X, = {x € X| Y a4 > 0}. Then (o, [) possesses the properties that

acX
> Bra > 0for z € X\ X, and a stationary strategy s, , that corresponds to

a€A(x)
(a, B) is determined by

: if xe Xy
> a
acA(x
Sz,a = © é ) (5)
~Pra i g e X\ X,
> Bra
a€A(x)

where s, , expresses the probability of choosing the actions a € A(z) in the states
r e X.

Remark 1. Problem (2), (3) can be considered also for the case when 6, = 0 for some
z € X. In particular, if 6, =0, Vo € X \ {zo} and 60,, =1 then this problem is
transformed into the model with fixed starting state xg. In this case for a feasible
solution (a, 3) the subset X \ X, may contain states for which >~ ¢ 4(,) Bra = 0.
In such states (5) couldn’t be used for determining s, ,(,)(a). Formula (5) can be
used for determining the strategies sz o = S4, 4(z) (a) in the states = € X for which
either ZaeA(m) Ogq >0 or ZGGA@) Bz,a > 0 and these strategies determine the
value of the objective function in the decision problem. In the states x € X, where

X0:{£E€X| Z am,azoy Z ﬁr,azo}’

acA(x) a€A(x)
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the strategies of selection the actions may be arbitrary because they do not affect
the value of the objective function.

As it is shown in [3,5, 8] for an arbitrary average Markov decision problem
it always has an optimal solution that corresponds to a pure stationary strategy.
However, the linear programming problem (2), (3) may have a basic solution («, [3)
for which the corresponding stationary strategy s determined through (5) is not
a pure stationary strategy for the Markov decision problem. So, if we solve the
linear programming problem (2), (3) and find an optimal basic solution (o, 3*)
then the corresponding optimal stationary strategy s* determined according to (5)
may be not a pure strategy. In this paper we formulate a new optimization model
in terms of stationary strategies for the average Markov decision problem that al-
lows to determine all optimal pure stationary strategies. The proposed model is
related to quasi-monotonic programming in which it is necessary to maximize a
quasi-monotonic objective function on a convex polyhedron set.

3 The main results

In this section we present the results that allow us to formulate the average
Markov decision problem in terms of stationary strategies as a quasi-monotonic pro-
gramming problem with linear constraints and to determine the optimal stationary
strategies.

3.1 A nonlinear optimization model in terms of stationary strate-
gies for average Markov decision problem

First we show that an average Markov decision problem in terms of stationary
strategies can be formulated as follows:

Maximize
Uis,qw) =D Y f(@,0)s0.a0 (6)
z€X acA(z)
subject to
dy — Z Z pg‘,y Sz,aqz = 0, Yy € X;

z€X a€A(x)

qy + wy — Z Z p%ysx,awx = 9y7 Yy € X;
z€X a€A(x) (7)

Z Sy,azla VyEX;
a€A(y)

S20>0, Ve e X, Vae A(x); w, >0, Vo € X,

where 6, are the same values as in problem (2), (3) and s;4, ¢z, w, for z € X,
a € A(x) represent the variables that must be found.

Theorem 1. Optimization problem (6), (7) determines the optimal stationary
strategies of the multichain average Markov decision problem.
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Proof. Let us assume that each action set A(z),z € X contains a single action a'.
Then system (3) is transformed into the following system of equations

Qy— Y Payde =0, Vy € X;
zeX

Qy+wy— > peywz =0, YyeX
reX
with conditions ¢,,w, > 0 for y € X, where ¢, = ay o, wy = By, Yy € X and
Dry = pg:y, Va,y € X. As it is shown in [8] such a system uniquely determines g,
for x € X and determines w, for x € X up to an additive constant in each recurrent
class of P = (pg,y). Here ¢, represents the limiting probability in the state = when
transitions start in the states y € X with probabilities 6, and therefore the condition
q: > 0 for x € X can be released. Note that w, for some states may be negative,
however always the additive constants in the corresponding recurrent classes can be
chosen so that w, became nonnegative. In general, we can observe that in (7) the
condition w, > 0 for x € X can be released and this does not influence the value of

objective function of the problem. In the case |A(z)| = 1, Vo € X the average cost
is determined as ¢ = > f(x)gs, where f(z) = f(z,a),Vz € X.

zeX
If the action sets A(z), * € X may contain more than one action then for a

given stationary strategy s € S of the selection of the actions in the states we can
find the average cost ¥(s) in a similar way as above by considering the probability
matrix P° = (p; ), where

pgsg,y: Z p;,ysm,a (8)

a€A(x)

expresses the probability transition from a state x € X to a state y € X when the
strategy s of selections of the actions in the states is applied. This means that we
have to solve the following system of equations

Q= D Paylz =0, Yy € X;
reX

Qy + Wy — Z p;,ywm = eyy Vy € X.
zeX

If in this system we take into account (8) then this system can be written as follows

4y — Z Z p%y Sz,aqz = 0, Yy € X;
z€X a€A(x) (9)
dy + Wy — Z Z p%,ysx,awx = Hy, Vy c X.
z€X acA(x)

An arbitrary solution (g,w) of the system of equations (9) uniquely determines g,
for y € X that allows us to determine the average cost per transition

¢(S) = Z Z f(a;, a)sx,an (10)

rzeX aeX
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when the stationary strategy s is applied. If we are seeking for an optimal stationary
strategy then we should add to (9) the conditions

Z Spa=1, Ve e X; 5,,>0, Ve € X,a € A(x) (11)
a€A(x)

and to maximize (10) under the constraints (9), (11). In such a way we obtain
problem (6), (7) without conditions w, > 0 for x € X. As we have noted the
conditions w, > 0 for x € X do not influence the values of the objective function
(6) and therefore we can preserve such conditions that show the relationship of the
problem (6), (7) with problem (2), (3). O

Corollary 1. Let (s,q,w) be a feasible solution of problem (6), (7). Then
Qg a = Sz,alx, ﬁm,a = Sz,aWx, Vo € X,a € A($) (12)

represents a feasible solution («,[3) of problem (2), (3) and ¥(s,q,w) = ¢(«, ).
If (o, B) is a feasible solution of problem (2), (3) then a feasible solution (s,q,w) of
problem (6), (7) can be determined as follows:

_ GYwa for x € X,, a€ A(z);
Z Qg.a
Spa = aeAéx) (13)
—22  for x € X\ Xa, a € A(x);
> Bra
a€A(x)

Gz = Z Ozqy Wy = Z Bra for e X.

a€A(x) acA(x)

Note that a pure stationary strategy s of problem (6), (7) corresponds to a
basic solution («, 3) of problem (2), (3) for which (13) holds, however system (3)
may contain basic solutions for which stationary strategies determined through (13)
do not correspond to pure stationary strategies. Moreover, two different feasible
solutions of problem (2), (3) may generate through (13) the same stationary strategy.
Such solutions of system (3) are considered equivalent solutions for the decision
problem.

Corollary 2. If (a!,3%), i=1,k, represent the basic solutions of system (3) then
the set of solutions

k

k
M ={(@ ) (a,8) = 3 Ni(a', 5, ;Aizl, X>0, i =TF}

i=1

determines all feasible stationary strategies of problem (6), (7) through (13).
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An arbitrary solution («,[3) of system (3) can be represented as follows: o =
Zle Aot where Zle AM=1; XN>0, ¢=1,k, and B represents a solution of the
system

Z )/BZE,U/ - Z Z pg/’x/BZ,[l - 012 - Z a{[7a, \V/l‘ 6 X;

acA(y 2€X a€A(z) acA(x)
Bya >0, Ve X, aec Alx).
If (o, B) is a feasible solution of problem (2), (3) and (o, 3) & M then there exists a
solution (o/,B") € M that is equivalent to (o, 3) and ¥ (a, B) = ¥(d/, 3).
3.2 A quasi-monotonic programming model in stationary strategies

The main result of the paper that allows us to ground algorithms for determining
the optimal pure stationary strategies for the average Markov decision problem is
represented by the following theorem.

Theorem 2. Let an average Markov decision problem be given and consider the

function
¢(S) = Z Z f(:c,a)sm,aqmv (14)

z€X acA(x)

where q, for x € X satisfies the condition

4y — Z Z p%y Sz,aqz = 0, Yy € X;
z€X a€A(x)
(15)
@ twy,— > Py ySz.aWa = 8y, vy € X.
z€X acA(x)

Then on the set S of solutions of the system

Yo Sza=1 VrelX,
a€A(x) (16)
S20>0, VrelX, aecAx)

the function (s) depends only on szq for € X, a € A(x) and (s) is
quasi-monotonic on S (i.e. (s) is quasi-convex and quasi-concave on S).

Proof. The proof of first part of the theorem is evident because for an arbitrary
s € S system (15) uniquely determines g, for x € X and determines w, for x € X
up to a constant in each recurrent class of P° = (pj ).

Let us prove the second part of the theorem.

Assume that 6, > 0,Vz € X where ) 60, = 1 and consider arbitrary two
strategies s, s” € S for which s’ # s”. Then according to Corollary 1 there exist
feasible solutions (¢/, ") and («”,3"”) of the linear programming problem (2), (3)
for which

U(s') = p(d, 7)), (") = (", 8"), (17)
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where

/ 1 A .
o = Spalys Ogy = Sy CLqm, Ve e X, a € A(x);

’_ / "o .
Bra = Sz.aWas my—smaqm Ve e X, a € A(z);

Z awa ma_ Z ﬁxaa V$€X

a€A(x)

acA(x)
Z all Z B o VrelX.
acA(z a€A(x)

The function ¢(«

,3)) is linear and therefore for an arbitrary feasible solution (@, 3)
of problem (2), (3) holds

p(@,B) = tp(’,5) + (1 = t)p(a”, 5")
if0<t<land (@pf)=t(,3)+ (1 —1t)(a",p").

Note that (@, 3) corresponds to a stationary strategy 3 for which

(18)

¥(3) = ¢(@, p), (19)
where
a_m’a if e Xg;
Spa=4 e (20)
@ if reX \ Xa.
Wy

Here Xz = {z € X|

> @gq > 0} is the set of recurrent states induced by
a€A(x)
ps=

(p5,), where p3  are calculated according to (8) for s =3 and
T, =t +(1—t)", w,=tw, + (1 -t)w!, VreX.
We can see that Xq = Xo U Xov, where Xy = {z € X| > o), > 0} and

a€A(x)
Xor={x e X| > af,>0}. The value
a€A(x) 7

S) = Z Z f($7a)§m,aqx

z€X a€A(x)

is determined by f(x,a), 5,4 and G, in recurrent states z € X5 and it is equal to
o(@, #). If we use (20) then for z € Xz and a € A(z) we have
ot (-tal,  that (L= 08kl
r,a — -

tq, + (1 —t)ql tq, + (1 —t)ql

_ tq; s (1 - t)q;c,
tq, + (1 —t)qy ™"

1

tg, + (1—t)g! =
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and for z € X \ Xz and a € A(z) we have

o tﬁg/v,a + (1 - t) :,E/,a o tsgv,aw/m + (1 - t)Sg,aw/m, o

Sz,a =

tw, + (1 —tw! — tw, + (1 —t)w”
tw’ 1—t)w”
= / - //S‘/'Ea—i_ /( ) . //sga'
twh + (1 —t)w? =% tw, + (1 —t)w!” ™
So, we obtain
Sea = taSh o+ (1 —te)sh ., Va € Az), (21)
where .
14y .
_ if zeXg;
) g+ (1= t)gy “ 59
te = tw! (22)

tw!, + (1 — t)w!
and from (17)—(19) we have

»(3) = t(s) + (1 = t)i(s"). (23)
This means that if we consider the set of strategies

S(s',5") = {5| Swa = tash o + (1 —ta)sy ., Vze X,a€ Ax)}

z,a’

then for an arbitrary 5 € S(s,s”) it holds

min{y(s),1(s")} < ¥(5) < max{y(s),9(s")}, (24)

i.e ¥(s) is monotone on S(s’,s”). Moreover, using (21)-(24) we obtain that 5 pos-
sesses the properties

}in% Sea = Spa VT € X, a € Az); %in&?x,a = sl Vo € X,a € A(x) (25)

z,a’

and respectively

lim (5) = ¥(s);  limw(s) = B(s").

t—1

In the following we show that the function 1/(s) is quasi-monotonic on S. To
prove this it is sufficient to show that for an arbitrary ¢ € R the sublevel set

L () ={s € S| ¥(s) < c}

and the superlevel set B

LE() ={s € 8] ¥(s) = c}
of function (s) are convex. These sets can be obtained respectively from the
sublevel set L7 (p) = {(a,B)] p(a,B)) < ¢} and the superlevel set L} (1))

{(a, B)] p(a,B)) > ¢} of function ¢(a, B) for the linear programming problem (2),
(3) using (13).
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Denote by (of, "), i = 1,k the basic solutions of system (3). According to
Corollary 2 all feasible strategies of problem (2), (3) can be obtained trough (13)
using the basic solutions (of,3°), i = 1,k. Each (a!,3"), i = 1,k, determines a
stationary strategy

=2 for x € Xy, a€ Ax);

Sa=1 o (26)
=2 for z€ X\ X,i, a € Ax)
w

for which 1 (s?) = 1 (a?, 3°) where
X, ={zr € X| Z ozf,'w >0}, .= Z ol a wh = Z ﬁ;a, Ve e X, (27)

acA(x) acA(x acA(x)
An arbitrary feasible solution (a, 3) of system (3) determines a stationary strategy

Qg q
4z’

Sx.a = 3
x,a

w.o  for ze X\ X, a € A(z),

for x € Xq, a € A(x);
(28)

for which 1 (s) = ¢(a, 3) where
XQZ{Z'GX‘ZO(I,@>O}, qgc—zaxay wx—ZBxaavxEX

a€A(x) a€A(x) a€A(x)

Taking into account that («, 3) can be represented as

k k
(o, B) = Z)\i(o/,ﬁi), where Z/\i =1, X'>0,i=1,k, (29)
i=1 i=1
_ k
we have ¥ («, 3) = E P(at, BN and we can consider

k k k k
Xo= UXO;; oz:z/\io/; q:Z)\i ¢ wzzx\iwi. (30)
i=1 i=1 i=1 i=1
Using (26)—(30) we obtain:

> Mok, 3 Nish

Qg.a i=1 i=1 )‘ZQ;Z(; Z
Spa = = = —Z Spar VT € Xo, a € A(z);

qx qx qx i—1

k . k k . . .

bpw 2 Pra D NSatn ki

x,a 1= 1=
Spa=—— = = = Vee X\ X,,acA
r,a Wy Wy Wy Z Wy :ca? \ Q) ()

i=1
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and
k . . k . .
Gz = Z)\Zq;, Wy = Z)\Zw; for zeX. (31)
' i=1
So,
k PR
AZ 7
Z O Spa A gz >0;
o =
Spa = o (32)
Al
” ms;,a if g,=0
=1 r

where ¢, and w, are determined according to (31).

We can see that if X\, s?, ¢, i = 1,k, are given then the strategy s defined by
(32) is a feasible strategy because sy, > 0,Vz € X,a € A(z) and 3 ¢ 4(y) S0 =
k

k . . . .
1, Vo € X. Moreover, we can observe that ¢, = E ANgh, wy =Y ANwl for z € X
=1 i=1
represent a solution of system (15) for the strategy s defined by (32). This can be

verified by introducing (31) and (32) in (15); after such a substitution all equations
from (15) are transformed into identities. For 1(s) we have

Z foasxa%c—z foazk;< qwl) —

ze€X acA(z) z€Xa a€A(x) i=
k k
YT T s ]V =3 v
=1 “zeX_iacA(x i=1
i.e.
k

Y(s) =D s\, (33)
i=1
where s is the strategy that corresponds to («, ).

Thus, assuming that the strategies s',s?,...,s* correspond to basic solutions
(', BY), (a2, 52),...,(a*, B%) of problem (2), (3) and s € S corresponds to an arbi-
trary solution («, 3) of this problem that can be expressed as convex combination of
basic solutions of problem (2), (3) with the corresponding coefficients A}, A2, ... JAE
we can express the strategy s and the corresponding value ¢(s) by (31)—(33). In
general the representation (31)—(33) of strategy s and of the value (s) is valid for
an arbitrary finite set of strategies from S if (a,3) can be represented as convex
combination of the finite number of feasible solutions (!, 31), (a2, 3%),..., (*, 8¥)
that correspond to s',s2,...,s*; in the case k = 2 from (31)-(33) we obtain (21)-
(23). It is evident that for a feasible strategy s € S the representatlon (31) (32) may

_ =k
be not unique, i.e. two different vectors A = ()\ ,/\ ,...,/\ ) and A )\ )\ s A

may be that determine the same strategy s via (31), (32). If s!,s2,... ,sk represent
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the system of linear independent basic solutions of system (16) then an arbitrary
strategy s € S is determined according to (31), (32) where A, A2, ..., A¥ correspond
to a solution of the following system

k
dDN=1 M=o, i=Lk

i=1

Consequently, the sublevel set L (1) of function v (s) represents the set of strategies
s determined by (31), (32), where A, A2, ..., \¥ satisfy the condition

P(sHA < ¢

-

.
Il
—

(34)

1, AN>0, i=

2.
I

.
Il
—

17 k?

and the superlevel set L (1)) of 1(s) represents the set of strategies s determined
by (31), (32), where A\', A2, ..., \F satisfy the condition

P(sHAT > ¢

(35)

N=1; XN>0, i=

(]

1.
1

.
Il

Respectively the level set L.(1)) = {s € S| 1(s) = ¢} of function 1)(s) represents the
set of strategies s determined by (31), (32), where A', A2, ..., A satisfy the condition

M=~
<
o,
=

I
D

.
Il
—

(36)

A>0, i=

2.
I
\t—‘

s
I
—_

Lk

Let us show that L_ (v), LT (1)), L.(1) are convex sets. We present the proof
of convexity of sublevel set L (1)). The proof of convexity of L} (¢) and L.(v) is
similar to the proof of convexity of L7 ().

Denote by A the set of solutions (A!, )‘2’; .., AF) of system (34). Then from (31),

(32), (34) we have L7 (¢)) = [] S, where S, represents the set of strategies
zeX

Do NSt ) P
i:k )\jq:ﬂ if Zi:l AZq:ZE > 07
i=1
Sz,a = & ' ) 'x' a € A(Z’)
- Al st o
Zz—l 'ZB ‘m,a if Ek: /\qu _ 0’
Zk i i=1 T
i=1 T

in the state x € X determined by (A, \%,..., \¥) € A.
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For an arbitrary z € X theset A can be represented as follows A = Af UAY
where

k k
AT ={(A N AR € AL D NG > 0), AD={(M A2 AR € A D Nigh =0}
i=1 =1

and Zle Nawl >0 if Zle Aigi = 0. Therefore S, can be expressed as follows
S, = SF USY where S represents the set of strategies

=1 A4S0
Spa = %ﬂ%, for a € A(x) (37)
i=1 A"y

in the state z € X determined by (A, A\%,...,\*) € A} and Sg represents the set of
strategies

s )\'l 1 o1
= —Z’_l wxsx’a, for a € A(x) (38)

S X}
in the state 2 € X determined by (A}, \2,... \F) € AQ.

Thus, if we analyze (37) then observe that s, ,, for a given z € X, represents a
linear-fractional function with respect to A, \2,..., \F defined on a convex set AF
and S is the image of s, , on Af. Therefore S is a convex set. If we analyze (38)
then observe that s, ,, for given x € X, represents a linear-fractional function with
respect to AL, A2, ..., \F on the convex set AY and S’g is the image of s; 4 on AY.
Therefore SY is a convex set (see [1]). Additionally, we can observe that ATNAY = 0
and in the case A, A, # 0 the set AY represents the limit inferior of A;. Using this
property and taking into account (25) we can conclude that each strategy s, € 5‘2
can be regarded as the limit of a sequence of strategies {s’} from 5’; . Therefore
we obtain that S, = 5‘; U 5'2 is a convex set. This involves the convexity of the
sublevel set L7 (1). In an analogues way using (35) and (36) we can show that the
superlevel set LT (1)) and the level set L.(1)) are convex sets. This means that the
function v (s) is quasi-monotonic on S. So, if §, > 0,Vx € X and Y zex 0z = 1 then
the theorem holds.

If 6, =0 for some = € X then the set X \ X, may contain states for
which > c ) @ea = 0 and 3° 4,y Bra = 0 (see Remark 1 and Lemma 1). In
this case X can be represented as follows: X = (X \ Xp)) U Xg, where Xy = {x €
X| ZaeA(x) o =0; ZaeA(x) Bz,a = 0}. For 2 € X \ X the convexity of S, can
be proved in the same way as for the case 6, > 0,V € X. If Xy # 0 then for
r € Xo we have Sm = S, and the convexity of 5} is evident. So, the theorem
holds. O

Sz,a

Similar results can be extended for Markov decision problems with discounted re-
ward criterion for which the problem of determining the optimal stationary strategies
can be formulated as quasi-monotonic programming models with linear constraints.
Such models have been considered in [4-6].
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3.3 Algorithms based on quasi-monotonic programming

Based on Theorem 2, we can determine an optimal stationary strategy using
classical descent methods for the maximization of quasi-monotonic function (14) on
a convex polyhedron set S (see [1,2]). In particular if we are seeking for a pure
optimal stationary strategy then we can apply the following iterative procedure:
Fix an arbitrary pure strategy s° that is a basic solution of system (16), find a
solution (¢°,w®) of system (15) with respect to ¢, and w, and calculate w(s’) =
DoreX DoacA(x) fz,a)50.aq0 (here ¢° is determined uniquely from (15) for a given
sY). Then find a "neighbour” basic solution s! for s in S, determine a solution
(¢", w') of system (15) and calculate w(s') =Y . > acA(z) f(xﬂ)sglc’a ql. If for an
arbitrary "neighbour” basic solution s! for s° it holds w(s’) > w(s') then s° is an
optimal pure stationary strategy; otherwise we find a ”neighbour” basic solution s
for s and in a similar way calculate w(s?) = >, ¢ 2 acA(z) fw.a)52.q @3- If for an
arbitrary "neighbour” basic solution s? for s! it holds w(s!) > w(s?) then s! is an
optimal pure stationary strategy; otherwise we find a “neighbour” basic solution s3
for s? and so on. In a finite number of steps we determine an optimal basic solution
sk of system (16) that corresponds to a pure stationary strategy for the average
Markov decision problem.

It is easy to observe that the convergence of some algorithms for determining
the optimal stationary strategies from [3,5,8,9] can be grounded using the proposed
optimization models and Theorem 1. Additionally, the proposed model can be useful
for studying the average stochastic positional games in pure stationary strategies [7].

4 Conclusion

An average Markov decision problem with finite state and action spaces can be
formulated and studied in terms of stationary strategies using optimization mod-
els (6), (7) and (14)—(16). Classical optimization methods and the corresponding
algorithms for the maximization of a quasi-linear function (14), (15) on the con-
vex polyhedron set determined by (16) can be applied for finding the optimal pure
stationary strategies in the average Markov decision problem.
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