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An Approach for Determining the Optimal Strategies

for an Average Markov Decision Problem with Finite

State and Action Spaces
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Abstract. The average reward Markov decision problem with finite state and action
spaces is considered and an approach for determining the optimal pure and mixed
stationary strategies for this problem is proposed. We show that the considered prob-
lem can be formulated in terms of stationary strategies where the objective function
is quasi-monotonic (i. e. it is quasi-convex and quasi-concave) on the feasible set of
stationary strategies. Using such a quasi-monotonic programming model with lin-
ear constraints we ground algorithms for determining the optimal pure and mixed
stationary strategies for the average Markov decision problem.
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1 Introduction and problem formulation

In this paper we consider the average reward Markov decision problem for time
discrete systems with infinite horizon. The state and action spaces are assumed to
be finite. Our aim is to propose an approach for determining the optimal strategies
(policies) for an average Markov decision problem that is based on quasimonotonic
programming with linear constraints. We show that the considered problem can be
formulated in terms of stationary strategies where the objective function is quasi-
monotonic (i. e. it is quasi-convex and quasi-concave) on the feasible polyhedron set
of stationary strategies. So, we show that our decision problem can be represented
as a quasi-monotonic programming problem, and based on such a model we propose
algorithms for determining the optimal pure and mixed stationary strategies.

An average Markov decision problem is determined by the following elements:

– a finite set of states X;

– a finite set of actions A(x) for each state x ∈ X;

– a transition probability function p : X ×
∏

x∈X

A(x) ×X → [0, 1] that gives

the probability transitions pa
x,y from an arbitrary x ∈ X to an arbitrary

y ∈ X for a fixed action a ∈ A(x), where
∑

y∈X

pa
x,y = 1, ∀x ∈ X, a ∈ A(x);
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– a step reward rx,a for each state x ∈ X and every action a ∈ A(x);

– a starting state x0 ∈ X.

The control process in the considered problem starts in the state x0 at the moment
of time t = 0 where the decision maker selects an action a0 ∈ A(xo) and receives
the reward f(x0, a0). After that the dynamical system passes randomly to a state
y = x1 ∈ X according to probability distributions pa0

x0,y, where x1 is reached at
the moment of time t = 1. In general, at the moment of time t ∈ {0, 1, 2, . . . } the
decision maker observes the state xt of the system and selects an action at ∈ A(xt).
After that he receiveds the reward f(xt, at) and the system passes randomly to a
state y = xt+1 according to probability distributions pat

xt,y. Such a process induces
a sequence of rewards f(x0, a0), f(x1, a1), . . . , f(xt, at), . . . for which the average
reward per transition

ωx0 = lim
t→∞

inf E

(

1

t

t−1
∑

τ=0

f(xτ , aτ )

)

,

is gained. The aim of the decision maker is to determine a strategy of selection the
actions in the states that provides the maximal average reward per transition. A
strategy in a Markov decision problem is a mapping si that for every state xt ∈ X

at the moment of time t provides a probability distribution over the set of actions
A(xt). If the probabilities in these distributions take only values 0 and 1, then s is
called a pure strategy, otherwise s is called a mixed strategy. If these probabilities
depend only on the state xt = x ∈ X (i. e. s does not depend on t), then s is called
a stationary strategy.

Let s be a stationary strategy applied by the decision maker. Then such a
strategy induces a Markov chain with probability transition matrix P s = (px,ys)
and the step rewards f(x, s) in the states x ∈ X that can be determined as follows:

ps
x,y =

∑

a∈A(x)

sx,ypx,y, ∀x, y ∈ X; f(x, s) =
∑

a∈A(x)

sx,af(x, a),∀x ∈ X.

This means that if a stationary strategy s in the control process is applied then the
average reward per transition can be calculated by using the formula

ωx0(s) =
∑

y∈Y

f(y, s)qs
x0,y,

where qs
x,y for x, y ∈ X represents the elements of the limit matrix Qs = (qs

x,y) for
the probability transition matrix P s induced by the strategy s.

It is well-known (see [8]) that for the average Markov decision problem with
finite state and action spaces an optimal strategy always exists and such an optimal
strategy can be found in the set of stationary strategies. Moreover, for the considered
problem there exists an optimal strategy that corresponds to a pure stationary
strategy that is an optimal one for an arbitrary starting state. Taking into account
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that the set of stationary strategies corresponds to the set of feasible solutions of
the following system







∑

a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x),
(1)

where each extreme point of this set of solutions corresponds to a pure stationary
strategy then we can determine the optimal solution by calculating the average re-
ward for each extreme point of system (1) and selecting the best one. Obviously
such an approach is not convenient. Suitable algorithms for determining the opti-
mal strategies for the average decision problem based on linear programming and
algorithms based on value and policy iteration can be found in [3, 8, 9].

In this paper we propose an approach for determining the optimal strategies that
is based on quasimonotonic programming with linear constraints. We show that such
an approach allows us to ground new algorithms for determining the optimal solution
for the considered problem.

2 Preliminaries

In [8] it is shown that an optimal stationary strategy for an infinite horizon
average Markov decision problem with finite state and action spaces can be found
by solving the following linear programming problem:
Maximize

ϕ(α, β) =
∑

x∈X

∑

a∈A(x)

rx,aαx,a (2)

subject to























∑

a∈A(y)

αy,a −
∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = 0, ∀y ∈ X;

∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pa
x,yβx,a = θy, ∀y ∈ X;

αx,a ≥ 0, βy,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(3)

where θy for y ∈ X represent arbitrary positive values that satisfy the condition
∑

y∈X

θy = 1, where θy for y ∈ Y are treated as the probabilities of choosing the

starting state y ∈ X. In the case θy = 1 for y = x0 and θy = 0 for y ∈ X \ {x0} we
obtain the linear programming model for an average Markov decision problem with
fixed starting state x0.

This linear programming model corresponds to the multichain case of an average
Markov decision problem. If each stationary policy in the decision problem induces
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an ergodic Markov chain then the restrictions (3) can be replaced by the restrictions






















∑

a∈A(y)

αy,a −
∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = 0, ∀y ∈ X;

∑

y∈X

∑

a∈A(y)

αy,a = 1;

αy,a ≥ 0, ∀y ∈ X, a ∈ A(y).

(4)

In the linear programming model (2), (3) the restrictions
∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pa
x,yβx,a = θy, ∀y ∈ X

with the condition
∑

y∈X

θy = 1 generalize the constraint

∑

x∈X

∑

a∈A(y)

αy,a = 1

in the linear programming model (2), (4) for the ergodic case.

The relationship between feasible solutions of problem (2), (3) and stationary
strategies in the average Markov decision problem is as follows:

Let (α, β) be a feasible solution of the linear programming problem (2), (3) and
denote by Xα = {x ∈ X|

∑

a∈X

αx,a > 0}. Then (α, β) possesses the properties that
∑

a∈A(x)

βx,a > 0 for x ∈ X \ Xα and a stationary strategy sx,a that corresponds to

(α, β) is determined by

sx,a =



































αx,a
∑

a∈A(x)

αx,a

if x ∈ Xα;

βx,a
∑

a∈A(x)

βx,a

if x ∈ X \Xα,
(5)

where sx,a expresses the probability of choosing the actions a ∈ A(x) in the states
x ∈ X.

Remark 1. Problem (2), (3) can be considered also for the case when θx = 0 for some
x ∈ X. In particular, if θx = 0, ∀x ∈ X \ {x0} and θx0 = 1 then this problem is
transformed into the model with fixed starting state x0. In this case for a feasible
solution (α, β) the subset X \ Xα may contain states for which

∑

a∈A(x) βx,a = 0.
In such states (5) couldn’t be used for determining sdα,β(x)(a). Formula (5) can be
used for determining the strategies sx,a = sdα,β(x)(a) in the states x ∈ X for which
either

∑

a∈A(x) αx,a > 0 or
∑

a∈A(x) βx,a > 0 and these strategies determine the
value of the objective function in the decision problem. In the states x ∈ X0, where

X0 = {x ∈ X|
∑

a∈A(x)

αx,a = 0,
∑

a∈A(x)

βx,a = 0},
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the strategies of selection the actions may be arbitrary because they do not affect
the value of the objective function.

As it is shown in [3, 5, 8] for an arbitrary average Markov decision problem
it always has an optimal solution that corresponds to a pure stationary strategy.
However, the linear programming problem (2), (3) may have a basic solution (α, β)
for which the corresponding stationary strategy s determined through (5) is not
a pure stationary strategy for the Markov decision problem. So, if we solve the
linear programming problem (2), (3) and find an optimal basic solution (α∗, β∗)
then the corresponding optimal stationary strategy s∗ determined according to (5)
may be not a pure strategy. In this paper we formulate a new optimization model
in terms of stationary strategies for the average Markov decision problem that al-
lows to determine all optimal pure stationary strategies. The proposed model is
related to quasi-monotonic programming in which it is necessary to maximize a
quasi-monotonic objective function on a convex polyhedron set.

3 The main results

In this section we present the results that allow us to formulate the average
Markov decision problem in terms of stationary strategies as a quasi-monotonic pro-
gramming problem with linear constraints and to determine the optimal stationary
strategies.

3.1 A nonlinear optimization model in terms of stationary strate-

gies for average Markov decision problem

First we show that an average Markov decision problem in terms of stationary
strategies can be formulated as follows:
Maximize

ψ(s, q, w) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx (6)

subject to


















































qy −
∑

x∈X

∑

a∈A(x)

pa
x,y sx,aqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,awx = θy, ∀y ∈ X;

∑

a∈A(y)

sy,a = 1, ∀y ∈ X;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x); wx ≥ 0, ∀x ∈ X,

(7)

where θy are the same values as in problem (2), (3) and sx,a, qx, wx for x ∈ X,
a ∈ A(x) represent the variables that must be found.

Theorem 1. Optimization problem (6), (7) determines the optimal stationary
strategies of the multichain average Markov decision problem.
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Proof. Let us assume that each action set A(x), x ∈ X contains a single action a′.
Then system (3) is transformed into the following system of equations











qy −
∑

x∈X

px,yqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

px,ywx = θy, ∀y ∈ X

with conditions qy, wy ≥ 0 for y ∈ X, where qy = αy,a′ , wy = βy,a′ , ∀y ∈ X and
px,y = pa′

x,y, ∀x, y ∈ X. As it is shown in [8] such a system uniquely determines qx
for x ∈ X and determines wx for x ∈ X up to an additive constant in each recurrent
class of P = (px,y). Here qx represents the limiting probability in the state x when
transitions start in the states y ∈ X with probabilities θy and therefore the condition
qx ≥ 0 for x ∈ X can be released. Note that wx for some states may be negative,
however always the additive constants in the corresponding recurrent classes can be
chosen so that wx became nonnegative. In general, we can observe that in (7) the
condition wx ≥ 0 for x ∈ X can be released and this does not influence the value of
objective function of the problem. In the case |A(x)| = 1, ∀x ∈ X the average cost
is determined as ψ =

∑

x∈X

f(x)qx, where f(x) = f(x, a),∀x ∈ X.

If the action sets A(x), x ∈ X may contain more than one action then for a
given stationary strategy s ∈ S of the selection of the actions in the states we can
find the average cost ψ(s) in a similar way as above by considering the probability
matrix P s = (ps

x,y), where

ps
x,y =

∑

a∈A(x)

pa
x,ysx,a (8)

expresses the probability transition from a state x ∈ X to a state y ∈ X when the
strategy s of selections of the actions in the states is applied. This means that we
have to solve the following system of equations











qy −
∑

x∈X

ps
x,yqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

ps
x,ywx = θy, ∀y ∈ X.

If in this system we take into account (8) then this system can be written as follows















qy −
∑

x∈X

∑

a∈A(x)

pa
x,y sx,aqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,awx = θy, ∀y ∈ X.

(9)

An arbitrary solution (q, w) of the system of equations (9) uniquely determines qy
for y ∈ X that allows us to determine the average cost per transition

ψ(s) =
∑

x∈X

∑

a∈X

f(x, a)sx,aqx (10)
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when the stationary strategy s is applied. If we are seeking for an optimal stationary
strategy then we should add to (9) the conditions

∑

a∈A(x)

sx,a = 1, ∀x ∈ X; sx,a ≥ 0, ∀x ∈ X,a ∈ A(x) (11)

and to maximize (10) under the constraints (9), (11). In such a way we obtain
problem (6), (7) without conditions wx ≥ 0 for x ∈ X. As we have noted the
conditions wx ≥ 0 for x ∈ X do not influence the values of the objective function
(6) and therefore we can preserve such conditions that show the relationship of the
problem (6), (7) with problem (2), (3).

Corollary 1. Let (s, q, w) be a feasible solution of problem (6), (7). Then

αx,a = sx,aqx, βx,a = sx,awx, ∀x ∈ X,a ∈ A(x) (12)

represents a feasible solution (α, β) of problem (2), (3) and ψ(s, q, w) = φ(α, β).
If (α, β) is a feasible solution of problem (2), (3) then a feasible solution (s, q, w) of
problem (6), (7) can be determined as follows:

sx,a =



































αx,a
∑

a∈A(x)

αx,a

for x ∈ Xα, a ∈ A(x);

βx,a
∑

a∈A(x)

βx,a

for x ∈ X \Xα, a ∈ A(x);
(13)

qx =
∑

a∈A(x)

αx,a, wx =
∑

a∈A(x)

βx,a for x ∈ X.

Note that a pure stationary strategy s of problem (6), (7) corresponds to a
basic solution (α, β) of problem (2), (3) for which (13) holds, however system (3)
may contain basic solutions for which stationary strategies determined through (13)
do not correspond to pure stationary strategies. Moreover, two different feasible
solutions of problem (2), (3) may generate through (13) the same stationary strategy.
Such solutions of system (3) are considered equivalent solutions for the decision
problem.

Corollary 2. If (αi, βi), i = 1, k, represent the basic solutions of system (3) then
the set of solutions

M =
{

(α, β)| (α, β) =

k
∑

i=1

λi(αi, βi),

k
∑

i=1

λi = 1, λi > 0, i = 1, k
}

determines all feasible stationary strategies of problem (6), (7) through (13).
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An arbitrary solution (α, β) of system (3) can be represented as follows: α =
∑k

i=1 λ
iαi, where

∑k
i=1 λ

i = 1; λi ≥ 0, i = 1, k, and β represents a solution of the
system











∑

a∈A(y)

βx,a −
∑

z∈X

∑

a∈A(z)

pa
z,xβz,a = θx −

∑

a∈A(x)

αx,a, ∀x ∈ X;

βy,a ≥ 0, ∀x ∈ X, a ∈ A(x).

If (α, β) is a feasible solution of problem (2), (3) and (α, β) 6∈M then there exists a
solution (α′, β′) ∈M that is equivalent to (α, β) and ψ(α, β) = ψ(α′, β′).

3.2 A quasi-monotonic programming model in stationary strategies

The main result of the paper that allows us to ground algorithms for determining
the optimal pure stationary strategies for the average Markov decision problem is
represented by the following theorem.

Theorem 2. Let an average Markov decision problem be given and consider the
function

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x,a)sx,a qx, (14)

where qx for x ∈ X satisfies the condition















qy −
∑

x∈X

∑

a∈A(x)

pa
x,y sx,aqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,awx = θy, ∀y ∈ X.

(15)

Then on the set S of solutions of the system







∑

a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

(16)

the function ψ(s) depends only on sx,a for x ∈ X, a ∈ A(x) and ψ(s) is
quasi-monotonic on S ( i.e. ψ(s) is quasi-convex and quasi-concave on S).

Proof. The proof of first part of the theorem is evident because for an arbitrary
s ∈ S system (15) uniquely determines qx for x ∈ X and determines wx for x ∈ X

up to a constant in each recurrent class of P s = (ps
x,y).

Let us prove the second part of the theorem.
Assume that θx > 0,∀x ∈ X where

∑

x∈X θx = 1 and consider arbitrary two
strategies s′, s′′ ∈ S for which s′ 6= s′′. Then according to Corollary 1 there exist
feasible solutions (α′, β′) and (α′′, β′′) of the linear programming problem (2), (3)
for which

ψ(s′) = ϕ(α′, β′), ψ(s′′) = ϕ(α′′, β′′), (17)
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where
α′

x,a = s′x,aq
′

x, α′′

x,y = s′′x,aq
′′

x, ∀x ∈ X, a ∈ A(x);

β′x,a = s′x,aw
′

x, β′′x,y = s′′x,aq
′′

x, ∀x ∈ X, a ∈ A(x);

q′x =
∑

a∈A(x)

α′

x,a w′

x,a =
∑

a∈A(x)

β′x,a, ∀x ∈ X;

q′′x =
∑

a∈A(x)

α′′

x,a w′′

x,a =
∑

a∈A(x)

β′′x,a, ∀x ∈ X.

The function ϕ(α, β)) is linear and therefore for an arbitrary feasible solution (α, β)
of problem (2), (3) holds

ϕ(α, β) = tϕ(α′, β′) + (1 − t)ϕ(α′′, β′′) (18)

if 0 ≤ t ≤ 1 and (α, β) = t(α′, β′) + (1 − t)(α′′, β′′).

Note that (α, β) corresponds to a stationary strategy s for which

ψ(s) = ϕ(α, β), (19)

where

sx,a =















αx,a

qx

if x ∈ Xα;

βx,a

wx

if x ∈ X \Xα.

(20)

Here Xα = {x ∈ X|
∑

a∈A(x)

αx,a > 0} is the set of recurrent states induced by

P s = (ps
x,y), where ps

x,y are calculated according to (8) for s = s and

qx = tq′x + (1 − t)q′′, wx = tw′

x + (1 − t)w′′

x, ∀x ∈ X.

We can see that Xα = Xα′ ∪ Xα′′ , where Xα′ = {x ∈ X|
∑

a∈A(x)

α′

x,a > 0} and

Xα′′ = {x ∈ X|
∑

a∈A(x)

α′′

x,a > 0}. The value

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx

is determined by f(x, a), sx,a and qx in recurrent states x ∈ Xα and it is equal to
ϕ(α, β). If we use (20) then for x ∈ Xα and a ∈ A(x) we have

sx,a =
tα′

x,a + (1 − t)α′′

x,a

tq′x + (1 − t)q′′x
=
ts′x,aq

′

x + (1 − t)s′′x,aq
′′

x

tq′x + (1 − t)q′′x
=

=
tq′x

tq′x + (1 − t)q′′x
s′x,a +

(1 − t)q′′x
tq′x + (1 − t)q′′x

s′′x,a
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and for x ∈ X \Xα and a ∈ A(x) we have

sx,a =
tβ′x,a + (1 − t)β′′x,a

tw′
x + (1 − t)w′′

x

=
ts′x,aw

′

x + (1 − t)s′′x,aw
′′

x

tw′
x + (1 − t)w′′

x

=

=
tw′

x

tw′
x + (1 − t)w′′

x

s′x,a +
(1 − t)w′′

x

tw′
x + (1 − t)w′′

x

s′′x,a.

So, we obtain
sx,a = txs

′

x,a + (1 − tx)s′′x,a, ∀a ∈ A(x), (21)

where

tx =















tq′x
tq′x + (1 − t)q′′x

if x ∈ Xα;

tw′

x

tw′
x + (1 − t)w′′

x

if x ∈ X \Xα.

(22)

and from (17)–(19) we have

ψ(s) = tψ(s′) + (1 − t)ψ(s′′). (23)

This means that if we consider the set of strategies

S(s′, s′′) = {s| sx,a = txs
′

x,a + (1 − tx)s
′′

x,a, ∀x ∈ X,a ∈ A(x)}

then for an arbitrary s ∈ S(s′, s′′) it holds

min{ψ(s′), ψ(s′′)} ≤ ψ(s) ≤ max{ψ(s′), ψ(s′′)}, (24)

i.e ψ(s) is monotone on S(s′, s′′). Moreover, using (21)–(24) we obtain that s pos-
sesses the properties

lim
t→1

sx,a = s′x,a,∀x ∈ X,a ∈ A(x); lim
t→0

sx,a = s′′x,a,∀x ∈ X,a ∈ A(x) (25)

and respectively
lim
t→1

ψ(s) = ψ(s′); lim
t→0

ψ(s) = ψ(s′′).

In the following we show that the function ψ(s) is quasi-monotonic on S. To
prove this it is sufficient to show that for an arbitrary c ∈ R the sublevel set

L−

c (ψ) = {s ∈ S| ψ(s) ≤ c}

and the superlevel set
L+

c (ψ) = {s ∈ S| ψ(s) ≥ c}

of function ψ(s) are convex. These sets can be obtained respectively from the
sublevel set L−

c (ϕ) = {(α, β)| ϕ(α, β)) ≤ c} and the superlevel set L+
c (ψ) =

{(α, β)| ϕ(α, β)) ≥ c} of function ϕ(α, β) for the linear programming problem (2),
(3) using (13).
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Denote by (αi, βi), i = 1, k the basic solutions of system (3). According to
Corollary 2 all feasible strategies of problem (2), (3) can be obtained trough (13)
using the basic solutions (αi, βi), i = 1, k. Each (αi, βi), i = 1, k, determines a
stationary strategy

si
x,a =



















αi
x,a

qi
x

, for x ∈ Xαi , a ∈ A(x);

βi
x,a

wi
x

, for x ∈ X \Xαi , a ∈ A(x)

(26)

for which ψ(si) = ψ(αi, βi) where

Xαi ={x ∈ X|
∑

a∈A(x)

αi
x,a > 0}, qi

x =
∑

a∈A(x)

αi
x,a, wi

x =
∑

a∈A(x)

βi
x,a, ∀x ∈ X. (27)

An arbitrary feasible solution (α, β) of system (3) determines a stationary strategy

sx,a =







αx,a
qx

, for x ∈ Xα, a ∈ A(x);

βx,a
wx

, for x ∈ X \Xα, a ∈ A(x),
(28)

for which ψ(s) = ψ(α, β) where

Xα = {x ∈ X|
∑

a∈A(x)

αx,a > 0}, qx =
∑

a∈A(x)

αx,a, wx =
∑

a∈A(x)

βx,a, ∀x ∈ X.

Taking into account that (α, β) can be represented as

(α, β) =

k
∑

i=1

λi(αi, βi), where

k
∑

i=1

λi = 1, λi ≥ 0, i = 1, k, (29)

we have ψ(α, β) =
k
∑

i=1
ψ(αi, βi)λi and we can consider

Xα =
k
⋃

i=1

Xαi ; α =
k
∑

i=1

λiαi; q =
k
∑

i=1

λiqi; w =
k
∑

i=1

λiwi. (30)

Using (26)–(30) we obtain:

sx,a =
αx,a

qx
=

k
∑

i=1
λiαk

x,a

qx
=

k
∑

i=1
λisi

x,aq
i
x

qx
=

k
∑

i=1

λiqi
x

qx
si
x,a, ∀x ∈ Xα, a ∈ A(x);

sx,a =
βx,a

wx
=

k
∑

i=1
λiβk

x,a

wx
=

k
∑

i=1
λisi

x,aw
i
x

wx
=

k
∑

i=1

λiwi
x

wx
si
x,a, ∀x∈X \Xα, a∈A(x)
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and

qx =

k
∑

i=1

λiqi
x, wx =

k
∑

i=1

λiwi
x for x ∈ X. (31)

So,

sx,a =



























k
∑

i=1

λiqi
x

qx
si
x,a if qx > 0;

k
∑

i=1

λiwi
x

wx
si
x,a if qx = 0,

(32)

where qx and wx are determined according to (31).

We can see that if λi, si, qi, i = 1, k, are given then the strategy s defined by
(32) is a feasible strategy because sx,a ≥ 0,∀x ∈ X,a ∈ A(x) and

∑

a∈A(x) sx,a =

1, ∀x ∈ X. Moreover, we can observe that qx =
k
∑

i=1
λiqi

x, wx =
k
∑

i=1
λiwi

x for x ∈ X

represent a solution of system (15) for the strategy s defined by (32). This can be
verified by introducing (31) and (32) in (15); after such a substitution all equations
from (15) are transformed into identities. For ψ(s) we have

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx =
∑

x∈Xα

∑

a∈A(x)

f(x, a)

k
∑

i=1

(

λiqi
x

qx
si
x,a

)

qx =

k
∑

i=1

(

∑

x∈X
αi

∑

a∈A(x)

f(x, a)si
x,aq

i
x

)

λi =
k
∑

i=1

ψ(si)λi,

i. e.

ψ(s) =

k
∑

i=1

ψ(si)λi, (33)

where s is the strategy that corresponds to (α, β).

Thus, assuming that the strategies s1, s2, . . . , sk correspond to basic solutions
(α1, β1), (α2, β2), . . . , (αk, βk) of problem (2), (3) and s ∈ S corresponds to an arbi-
trary solution (α, β) of this problem that can be expressed as convex combination of
basic solutions of problem (2), (3) with the corresponding coefficients λ1, λ2, . . . , λk,
we can express the strategy s and the corresponding value ψ(s) by (31)–(33). In
general the representation (31)–(33) of strategy s and of the value ψ(s) is valid for
an arbitrary finite set of strategies from S if (α, β) can be represented as convex
combination of the finite number of feasible solutions (α1, β1), (α2, β2), . . . , (αk, βk)
that correspond to s1, s2, . . . , sk; in the case k = 2 from (31)–(33) we obtain (21)–
(23). It is evident that for a feasible strategy s ∈ S the representation (31), (32) may

be not unique, i.e. two different vectors Λ = (λ
1
, λ

2
, . . . , λ

k
) and Λ = λ

1
, λ

2
, . . . , λ

k

may be that determine the same strategy s via (31), (32). If s1, s2, . . . , sk represent
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the system of linear independent basic solutions of system (16) then an arbitrary
strategy s ∈ S is determined according to (31), (32) where λ1, λ2, . . . , λk correspond
to a solution of the following system

k
∑

i=1

λi = 1; λi ≥ 0, i = 1, k.

Consequently, the sublevel set L−

c (ψ) of function ψ(s) represents the set of strategies
s determined by (31), (32), where λ1, λ2, . . . , λk satisfy the condition



















k
∑

i=1
ψ(si)λi ≤ c;

k
∑

i=1
λi = 1; λi ≥ 0, i = 1, k,

(34)

and the superlevel set L+
c (ψ) of ψ(s) represents the set of strategies s determined

by (31), (32), where λ1, λ2, . . . , λk satisfy the condition



















k
∑

i=1
ψ(si)λi ≥ c;

k
∑

i=1
λi = 1; λi ≥ 0, i = 1, k.

(35)

Respectively the level set Lc(ψ) = {s ∈ S| ψ(s) = c} of function ψ(s) represents the
set of strategies s determined by (31), (32), where λ1, λ2, . . . , λk satisfy the condition



















k
∑

i=1
ψ(si)λi = c;

k
∑

i=1
λi = 1; λi ≥ 0, i = 1, k.

(36)

Let us show that L−

c (ψ), L+
c (ψ), Lc(ψ) are convex sets. We present the proof

of convexity of sublevel set L−

c (ψ). The proof of convexity of L+
c (ψ) and Lc(ψ) is

similar to the proof of convexity of L−

c (ψ).
Denote by Λ the set of solutions (λ1, λ2, . . . , λk) of system (34). Then from (31),

(32), (34) we have L−

c (ψ) =
∏

x∈X

Ŝx where Ŝx represents the set of strategies

sx,a =



























∑k
i=1 λ

iqi
xs

i
x,a

∑k
i=1 λ

iqi
x

if
∑k

i=1 λ
iqi

x > 0,

∑k
i=1 λ

iwi
xs

i
x,a

∑k
i=1 λ

iwi
x

if
∑k

i=1 λ
iqi

x = 0,

a ∈ A(x)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ.
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For an arbitrary x ∈ X the set Λ can be represented as follows Λ = Λ+
x ∪Λ0

x,

where

Λ+
x ={(λ1, λ2, . . . , λk) ∈ Λ|

k
∑

i=1

λiqi
x > 0}, Λ0

x ={(λ1, λ2, . . . , λk) ∈ Λ|
k
∑

i=1

λiqi
x = 0}

and
∑k

i=1 λ
iwi

x > 0 if
∑k

i=1 λ
iqi

x = 0. Therefore Ŝx can be expressed as follows

Ŝx = Ŝ+
x ∪ Ŝ0

x, where Ŝ+
x represents the set of strategies

sx,a =

∑k
i=1 λ

iqi
xs

i
x,a

∑k
i=1 λ

iqi
x

, for a ∈ A(x) (37)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ+
x and Ŝ0

x represents the set of
strategies

sx,a =

∑k
i=1 λ

iwi
xs

i
x,a

∑k
i=1 λ

iwi
x

, for a ∈ A(x) (38)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ0
x.

Thus, if we analyze (37) then observe that sx,a, for a given x ∈ X, represents a
linear-fractional function with respect to λ1, λ2, . . . , λk defined on a convex set Λ+

x

and Ŝ+
x is the image of sx,a on Λ+

x . Therefore Ŝ+
x is a convex set. If we analyze (38)

then observe that sx,a, for given x ∈ X, represents a linear-fractional function with
respect to λ1, λ2, . . . , λk on the convex set Λ0

x and Ŝ0
x is the image of sx,a on Λ0

x.
Therefore Ŝ0

x is a convex set (see [1]). Additionally, we can observe that Λ+
x ∩Λ0

x = ∅
and in the case Λ+

x ,Λ
0
x, 6= ∅ the set Λ0

x represents the limit inferior of Λ+
x . Using this

property and taking into account (25) we can conclude that each strategy sx ∈ Ŝ0
x

can be regarded as the limit of a sequence of strategies {st
x} from Ŝ+

x . Therefore
we obtain that Ŝx = Ŝ+

x ∪ Ŝ0
x is a convex set. This involves the convexity of the

sublevel set L−

c (ψ). In an analogues way using (35) and (36) we can show that the
superlevel set L+

c (ψ) and the level set Lc(ψ) are convex sets. This means that the
function ψ(s) is quasi-monotonic on S. So, if θx > 0,∀x ∈ X and

∑

x∈X θx = 1 then
the theorem holds.

If θx = 0 for some x ∈ X then the set X \ Xα may contain states for
which

∑

a∈A(x) αx,a = 0 and
∑

a∈A(x) βx,a = 0 (see Remark 1 and Lemma 1). In
this case X can be represented as follows: X = (X \X0)) ∪X0, where X0 = {x ∈
X|

∑

a∈A(x) αx,a = 0;
∑

a∈A(x) βx,a = 0}. For x ∈ X \X0 the convexity of Ŝx can
be proved in the same way as for the case θx > 0,∀x ∈ X. If X0 6= ∅ then for
x ∈ X0 we have Ŝx = Sx and the convexity of Ŝx is evident. So, the theorem
holds.

Similar results can be extended for Markov decision problems with discounted re-
ward criterion for which the problem of determining the optimal stationary strategies
can be formulated as quasi-monotonic programming models with linear constraints.
Such models have been considered in [4–6].
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3.3 Algorithms based on quasi-monotonic programming

Based on Theorem 2, we can determine an optimal stationary strategy using
classical descent methods for the maximization of quasi-monotonic function (14) on
a convex polyhedron set S (see [1, 2]). In particular if we are seeking for a pure
optimal stationary strategy then we can apply the following iterative procedure:
Fix an arbitrary pure strategy s0 that is a basic solution of system (16), find a
solution (q0, w0) of system (15) with respect to qx and wx and calculate ω(s0) =
∑

x∈X

∑

a∈A(x) f(x,a)s
0
x,a q

0
x (here q0 is determined uniquely from (15) for a given

s0). Then find a ”neighbour” basic solution s1 for s0 in S, determine a solution
(q1, w1) of system (15) and calculate ω(s1) =

∑

x∈X

∑

a∈A(x) f(x,a)s
1
x,a q

1
x. If for an

arbitrary ”neighbour” basic solution s1 for s0 it holds ω(s0) ≥ ω(s1) then s0 is an
optimal pure stationary strategy; otherwise we find a ”neighbour” basic solution s2

for s1 and in a similar way calculate ω(s2) =
∑

x∈X

∑

a∈A(x) f(x,a)s
2
x,a q

2
x. If for an

arbitrary ”neighbour” basic solution s2 for s1 it holds ω(s1) ≥ ω(s2) then s1 is an
optimal pure stationary strategy; otherwise we find a ”neighbour” basic solution s3

for s2 and so on. In a finite number of steps we determine an optimal basic solution
sk of system (16) that corresponds to a pure stationary strategy for the average
Markov decision problem.

It is easy to observe that the convergence of some algorithms for determining
the optimal stationary strategies from [3,5,8,9] can be grounded using the proposed
optimization models and Theorem 1. Additionally, the proposed model can be useful
for studying the average stochastic positional games in pure stationary strategies [7].

4 Conclusion

An average Markov decision problem with finite state and action spaces can be
formulated and studied in terms of stationary strategies using optimization mod-
els (6), (7) and (14)–(16). Classical optimization methods and the corresponding
algorithms for the maximization of a quasi-linear function (14), (15) on the con-
vex polyhedron set determined by (16) can be applied for finding the optimal pure
stationary strategies in the average Markov decision problem.
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