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Integrability conditions for a class of cubic differential

systems with a bundle of two invariant straight lines

and one invariant cubic
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Abstract. We determine conditions for the origin to be a center for a class of cubic
differential systems having a bundle of two invariant straight lines and one invariant
cubic. We prove that a fine focus O(0, 0) is a center if and only if the first three
Lyapunov quantities vanish.
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1 Introduction

In this paper we consider the cubic system of differential equations

ẋ = y + ax2 + cxy + fy2 + kx3 + mx2y + pxy2 + ry3 ≡ P (x, y),

ẏ = −(x + gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) ≡ Q(x, y),
(1)

where P (x, y) and Q(x, y) are real and coprime polynomials in the variables x and
y. The origin O(0, 0) is a singular point of a center or a focus type for (1), that is,
a fine focus. The aim of this paper is to find verifiable conditions for O(0, 0) to be
a center.

It is known that a singular point O(0, 0) is a center for system (1) if and only if
it has a holomorphic first integral of the form F (x, y) = C in some neighborhood of
O(0, 0) [15]. Also, O(0, 0) is a center if and only if (1) has a holomorphic integrating
factor of the form µ = 1 +

∑

µj(x, y) in some neighborhood of O(0, 0) [1].
There exists a formal power series F (x, y) =

∑

Fj(x, y) such that the rate of
change of F (x, y) along trajectories of (1) is a linear combination of polynomials
{(x2 + y2)j}∞j=2

:

dF
dt

=
∞
∑

j=2

Lj−1(x
2 + y2)j .

Quantities Lj, j = 1,∞ are polynomials with respect to the coefficients of system
(1) called to be the Lyapunov quantities. The origin is a fine focus of order r if
L1 = L2 = . . . = Lr−1 = 0 and Lr 6= 0.

The origin is a center for (1) if and only if Lj = 0, j = 1,∞. By the Hilbert
basis theorem, there is N such that Lj = 0 for all j if and only if Lj = 0 for all
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j ≤ N . It is only necessary to find a finite number of Lyapunov quantities, though
in any given case it is not known a priori how many are required. Thus, the set of
points being a center must be an algebraic set, which is called the center variety.

The number N is known for quadratic systems N = 3 [2] and for cubic systems
with only homogeneous cubic nonlinearities N = 5 [22]. If the cubic system (1)
contains both quadratic and cubic nonlinearities, the problem of the center has been
solved only in some particular cases (see, for example, [3–11,14,16–18,20]).

In this paper we solve the problem of the center for cubic differential system (1)
assuming that (1) has two invariant straight lines and one invariant cubic passing
through one singular point, i.e. forming a bundle. The paper is organized as follows.
In Section 2 we present the known results concerning relation between integrability,
invariant algebraic curves and Lyapunov quantities. In Section 3 we find thirty
sufficient series of conditions for the existence of a bundle of two invariant straight
lines and one invariant conic. In Section 4 we obtain sufficient conditions for the
existence of a center and finally we give the proof of the main result: a fine focus
O(0, 0) is a center for cubic system (1) with a bundle of two invariant straight lines
and one invariant cubic if and only if the first three Lyapunov quantities vanish.

2 Algebraic solutions, Lypunov quantities, center

In this paper we study the problem of the center for cubic system (1) assuming
that the system has irreducible invariant algebraic curves.

Definition 1. An algebraic curve Φ(x, y) = 0 in C
2 with Φ ∈ C[x, y] is said to be

an invariant algebraic curve (an algebraic partial integral) of system (1) if

∂Φ

∂x
P (x, y) +

∂Φ

∂y
Q(x, y) = Φ(x, y)K(x, y), (2)

for some polynomial K(x, y) ∈ C[x, y] called the cofactor of the invariant algebraic
curve Φ(x, y) = 0.

If the cubic system (1) has sufficiently many invariant algebraic curves Φj(x, y) =
0, j = 1, . . . , q, then in most cases a first integral (an integrating factor) can be
constructed in the Darboux form

Φα1
1

Φα2
2

· · ·Φ
αq

q . (3)

Function (3), with αj ∈ C not all zero, is a first integral (an integrating factor) for
(1) if and only if

q
∑

j=1

αjKj ≡ 0
(

q
∑

j=1

αjKj ≡ −
∂Q

∂y
−

∂P

∂x

)

.

If system (1) has a first integral or an integrating factor of the form (3), being
Φj = 0 invariant algebraic curves of (1), then system (1) is called Darboux integrable.
The cubic systems (1) which are Darboux integrable have a center at O(0, 0).
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The method of Darboux turns out to be very useful and elegant one to prove
integrability for some classes of systems depending on parameters. These years,
interesting results on algebraic solutions, Lyapunov quantities and Darboux inte-
grability have been obtained (see, for example, [6–11,16,19,20]).

Definition 2. We say that (Φk, k = 1,M ; L = N) is a center sequence for (1) if the
existence of M invariant irreducible algebraic curves Φk(x, y) = 0 and the vanishing
of the Lyapunov quantities Lν , ν = 1, N , implies the origin O(0, 0) to be a center
for (1).

The problem of center sequences for cubic differential systems with invariant
algebraic curves was considered in [5–9]. In these papers, the problem of the center
for cubic systems with four invariant straight lines, three invariant straight lines,
two invariant straight lines and one invariant conic was completely solved. The
main results of these works are summarized in the following theorem.

Theorem 1. (ajx + bjy + cj , j = 1, 4; L = 2), (ajx + bjy + cj , j = 1, 3; L = 7)
and (ajx + bjy + cj , j = 1, 2, a20x

2 + a11xy + a02y
2 + a10x + a01y + 1 = 0; L = 4)

are center sequences for the cubic system (1).

The problem of the center for cubic system (1) having two parallel invariant
straight lines and one invariant cubic was solved in [11]. In this paper, we have
obtained the following result.

Theorem 2. (lj = ajx+bjy+cj, j = 1, 2, l1||l2, x2+y2+a30x
3+a21x

2y+a12xy2+
a03y

3 = 0; L = 2) is a center sequence for the cubic system (1).

The problem of center sequences for some classes of cubic systems (1) having
bundles of invariant algebraic curves was considered in [8, 9]. The main results of
these papers are summarized in the following theorem.

Theorem 3. (1+ajx−y, j = 1, 2, 3; L = 5), (1+ajx−y, j = 1, 2, a20x
2 +a11xy+

a10x + (a02y − 1)(y − 1) = 0; L = 4) are center sequences for the cubic system (1).

In the present paper, we shall prove that (lj = 1+ ajx− y, j = 1, 2, l1 ∩ l2 ∩Φ =
(0, 1); L = 3), where Φ = x2 +y2 +a30x

3 +a21x
2y +a12xy2 +a03y

3 is an irreducible
invariant cubic, is a center sequence for the cubic system (1).

3 Conditions for the existence of a bundle of two invariant straight

lines and one invariant cubic

Let the cubic system (1) have two invariant straight lines l1, l2 intersecting at a
real singular point (x0, y0). By rotating the system of coordinates (x → x cos ϕ −
y sin ϕ, y → x sin ϕ+y cos ϕ) and rescaling the axes of coordinates (x → αx, y → αy),
we obtain l1 ∩ l2 = (0, 1). In this case the invariant straight lines can be written as

lj ≡ 1 + ajx − y = 0, aj ∈ C, j = 1, 2; a2 − a1 6= 0. (4)
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Cubic systems with at most two invariant straight lines, including the line at
infinity, of the maximal multiplicity were investigated in [21]. Center conditions for
a cubic system (1) with two distinct invariant straight lines by using the method of
Darboux integrability are obtained in [10]. According to [10] the straight lines (4)
are invariant for (1) if and only if the following coefficient conditions are satisfied:

k = (a − 1)(a1 + a2) + g, l = −b, s = (1 − a)a1a2,
m = −a2

1
− a1a2 − a2

2
+ c(a1 + a2) − a + d + 2, r = −f − 1,

n = a1a2(−f − 2) − (d + 1), p = (f + 2)(a1 + a2) + b − c,
q = (a1 + a2 − c)a1a2 − g, (a − 1)2 + (f + 2)2 6= 0.

In this case the cubic system (1) looks:

ẋ = y + ax2 + cxy + fy2 + [(a − 1)(a1 + a2) + g]x3+

+ [d + 2 − a − a2

1
− (a1 + a2)(a2 − c)]x2y+

+[(f + 2)(a1 + a2) + b − c]xy2 − (f + 1)y3 ≡ P (x, y),

ẏ = −x − gx2 − dxy − by2 + (a − 1)a1a2x
3 + [g + a1a2(c−

− a1 − a2)]x
2y + [(f + 2)a1a2 + d + 1]xy2 + by3 ≡ Q(x, y).

(5)

Next for cubic system (5) we find conditions for the existence of one invariant
cubic curve passing through the same singular point (0, 1), i.e. forming a bundle.
Let the cubic curve be given by the equation

Φ(x, y) ≡ x2 + y2 + a30x
3 + a21x

2y + a12xy2 + a03y
3 = 0 (6)

with (a30, a21, a12, a03) 6= 0 and a30, a21, a12, a03 ∈ R.
In order the cubic curve (6) pass through a singular point (0, 1) and form a

bundle with the invariant straight lines (4), we shall assume a03 = −1.
By Definition 1, the cubic curve (6) is an invariant cubic curve for system (5) if

there exist numbers c20, c11, c02, c10, c01 ∈ R such that

P (x, y)
∂Φ

∂x
+ Q(x, y)

∂Φ

∂y
≡ Φ(x, y)(c20x

2 + c11xy + c02y
2 + c10x + c01y). (7)

Identifying the coefficients of the monomials xiyj in (7), we reduce this identity
to a system of fifteen equations {Fij = 0} for the unknowns a30, a21, a12, c20, c11, c02,
c10, c01. We find that

c20 = [2(f + 1)a12(a
2
12

+ 3a21) − 2((f + 2)(a1 + a2) − c)(a2
12

+ 2a21)+
+a12(2a − 11 + 2(a1 + a2)

2 + 2a1a2(f + 1) − 2c(a1 + a2))+
+3a30(2f + 5) + 6(b + c(a1a2 + 1) − a1a2(a1 + a2))]/2,

c11 = [2(f + 1)a2
12

− 2a12((f + 2)(a1 + a2) − c) + a21(4f + 13)+
+3(5 − 2a + 2f + 2a1a2(f + 2))]/2,

c02 = (f + 1)a12 + 3b, c10 = 2a − a21, c01 = a12 − 2b,

d = (3a21 − 2a + 2f + 3)/2, g = (3a30 − 3a12 + 2b + 2c)/2
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and a30, a21, a12 are the solutions of the following systems of algebraic equations:

F50 ≡ a30(a
2
12

+ 2a21)((f + 2)(a1 + a2) − c) + (a21a1a2 − a12a30)(a − 1)−
−a30(a

3
12

+ 3a12a21 + 3a30)(f + 1) + 3a30(a1 + a2)(a1a2 + a − 1)+
+a12a30((a1 + a2)(c − a1 − a2) − a1a2(f + 1)) − 3ca30a1a2 = 0,

F41 ≡ (a2
12

a21 + a12a30 + 2a2
21

)((f + 2)(a1 + a2) − c)−
−(f + 1)(a3

12
a21 + a2

12
a30 + 3a12a

2
21

+ 5a21a30)+
+2a21(a1 + a2)(a1a2 − 1 + a) − 2a1a2(ca21 − a12(a − 1))−
−(a12a21 + 3a30)(a − 1 + a1a2(f + 1) + (a1 + a2)(a1 + a2 − c)) = 0,

F32 ≡ (a3
12

+ 3a12a21 + 3a30)((f + 2)(a1 + a2) − c)+
+a12(a1a2 + a − 1)(a1 + a2) + a1a2(3 − 3a − ca12)−
−(a4

12
+ 4a2

12
a21 + 4a12a30 + 2a2

21
)(f + 1)−

−(a2
12

+ 2a21)(a − 1 + a1a2(f + 1) + (a1 + a2)(a1 + a2 − c)) = 0,

(8)

F40 ≡ 2a2
12

((f + 2)(a1 + a2) − (f + 1)a12 − c) − 3a12a21(2f + 1)+
+a12(5 − 2a + 2c(a1 + a2) − 2(a1 + a2)

2 − 2(f + 1)a1a2)+
+2a21(2(f + 2)(a1 + a2) − b − 3c) + a30(2a − 6f − 9)+
+4(a1 + a2)(a − 1) − a21a30 + 6a1a2(a1 + a2 − c) − 2b − 2c = 0,

F31 ≡ (4b + 6c)a30 − (2f − 4)a2

12
− 8a12a30 + 2a21(a − 3f − 5)+

+2a12((a1 + a2)(f + 2) − 2b − 3c) + a1a2(4a − 6f − 20)−
−a2

21
− 4(a2

1
+ a2

2
) + 4c(a1 + a2) − 2a − 2f − 1 = 0,

F22 ≡ a2

12
((f + 1)a12 − (f + 2)(a1 + a2) + c) + 3a12a21(f + 2)+

+a12((a1 + a2)
2 + (f + 1)a1a2 − c(a1 + a2) + 3f + 6)−

−(a21 + 1)(b + 2(f + 2)(a1 + a2)) − a1a2(a1 + a2 − c) = 0,

F13 ≡ (a12 − a1)(a12 − a2)(f + 2) = 0.

(9)

Denote j1 = a12(a1+a2)−3a1a2−a2

12
−2a21, j2 = f +1, j3 = a3

2
−a2

2
a12−a2a21−

a30, j4 = a3

1
−a2

1
a12−a1a21−a30, j5 = 4a3

12
a30−a2

12
a2

21
+18a12a21a30−4a3

21
+27a2

30
.

In order to find the conditions for the existence of an invariant cubic for system
(5) we study the consistency of the system of equations {(8), (9)} assuming that

(a1 − a2)(f + 2) 6= 0. (10)

The case f = −2 was investigated in [12]. Then from the equation F13 = 0 of (9),
we can see that either a12 = a1 or a12 = a2.

3.1 Case a12 = a1, a21 = −1

Suppose that a12 = a1 and a21 = −1. Then F13 ≡ 0 and F22 ≡ 0. We divide the
investigation into two cases: a2 = 1/a1 and a2 6= 1/a1.

3.1.1. a2 = 1/a1. In this case e1 ≡ F31 + 2F32 = 0 implies
e1 ≡ [(f + 2)a2

1
− 2ba1 − 3f − 6](a30 − a1) = 0.

If a30 = a1, then the cubic curve (6) is reducible. If a30 − a1 6= 0, then the
equation e1 = 0 yields b = [(a2

1
− 3)(f + 2)]/(2a1).
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We calculate the resultant of F50 and F40 with respect to f . We find that
Res(F50, F40, f) = (a30 − a1)(a− 1)f1f2, where f1 = a1a30 − 1, f2 = a2

1
− 3a1a30 − 2.

Let a = 1. Since F40 = 0, we have (f + 1)f2 = 0. Suppose that f2 = 0, then
a30 = (a2

1
− 2)/(3a1). In this case F50 ≡ 0, F40 ≡ 0 and F31 ≡ (a2

1
− 3)(f + 1) = 0.

If a2
1

= 3, then we obtain the following set of conditions

1) a = 1, b = 0, d = f − 1, g = (3c − 4a1)/3, a2
1

= 3, a2 = a1/3.

for the existence of an invariant cubic 12(x2 + y2)(1 − y) + (c− g)(x3 + 9xy2) = 0.

The case a2
1
6= 3 and f = −1 implies c = (a2

1
+ 1)/a1 and is contained in 8).

Suppose that f2 6= 0 and f = −1. Then F32 = 0 implies c = (a2
1
+1)/a1 and this

case is contained in 8).
Let a 6= 1 and f1 = 0. Then a30 = 1/a1. We express a from F40 = 0, c from

F32 = 0 and obtain that F41 6= 0.
Let (a − 1)f1 6= 0 and f2 = 0. Then a30 = (a2

1
− 2)/(3a1) and F40 6= 0.

3.1.2. a2 6= 1/a1. In this case we express c from F40 = 0 and the equation
e2 ≡ F32 + F31 = 0 implies

e2 ≡ ((a1 − 3a2)(f + 2) − 2b)(a1 − a30) = 0.
When a30 = a1 the cubic curve is reducible. Assume that a30 − a1 6= 0. Then

e2 = 0 yields b = ((a1 − 3a2)(f + 2))/2 and F50 ≡ (a − 1)(a2 − a30) = 0.

Suppose that a30 = a2 = 0. Then F32 ≡ (a1 − 2)(a1 + 2)(f − a + 2) = 0 and we
obtain the following three sets of conditions for the existence of an invariant cubic:

2) b = f + 2, c = 2 − a − f, d = f − a, g = 1 − a, a1 = 2, a2 = 0.

The invariant cubic is x2 + y2 − y(x − y)2 = 0.

3) b = −f − 2, c = a + f − 2, d = f − a, g = a − 1, a1 = −2, a2 = 0.

The invariant cubic is x2 + y2 − y(x + y)2 = 0.

4) c = [2b(2 − a)]/a, d = −2, f = a − 2, g = [b(1 − a)]/a, a1 = (2b)/a, a2 = 0.

The invariant cubic is a(x2 + y2)(y − 1) − 2bxy2 = 0.

Suppose that a30 = a2 and a2 6= 0. We calculate the resultant of F41 and F32

with respect to f . We find that Res(F41, F32, f) = (a2 − a1)
2(a − 1)j5, where

j5 = 4a3
1
a2 − a2

1
− 18a1a2 + 27a2

2
+ 4.

If a = 1 and f = −1, then this case is contained in 6). If a = 1 and f 6= −1,
then we get the following set of conditions for the existence of an invariant cubic:

5) a = 1, d = f − 1, b = [(f + 2)(a1 − 3a2)]/2, g = [3(a2 − a1) + 2(b + c)]/2,
c = [2a1a2(a1 +a2)+ (f − 1)a1 −a2(5f +7)]/[2(a1a2 − 1)], F41 ≡ 4a2

1
a2

2
−a2

1
−

6a1a2 +15a2

2
+4 = 0, F32 ≡ 2a3

1
a2−4a2

1
a2

2
−a2

1
+6a1a

3

2
−10a1a2 +19a2

2
+4 = 0.

The invariant cubic is (x2 + y2)(1 − y) + x(a1y
2 + a2x

2) = 0.

Let a 6= 1 and j5 = 0. The equation j5 = 0 admits the following parametrization
a2 = u2(a1 + 2u), a1 = (−3u2 − 1)/(2u).

In this case F32 ≡ F41 ≡ ((f + 1)u2 + 2a − f − 3)(3u2 − 1) = 0. We obtain the
following two sets of conditions for the existence of an invariant cubic:
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6) a = [f + 3 − (f + 1)u2]/2, d = f − a, b = −[(f + 2)(3u4 + 1)]/(4u), c =
[f(u2 + 1) + u4 − 3u2]/(2u), g = [((3f + 1)u2 + f + 1)(1 − u2)]/(4u), a1 =
(−3u2 − 1)/(2u), a2 = u2(a1 + 2u).

The invariant cubic is 2u(x2 + y2) + (u2x − 2uy − x)(ux + y)2 = 0.

7) b = (−f − 2)/(3u), c = (9a + 3f − 16)/(9u), d = f − a, g = (9a − 10)/(9u),
3u2 − 1 = 0, a1 = (−1)/u, a2 = (−u)/3.

The invariant cubic is 9u(x2 + y2)(y − 1) + x(x2 + 9y2) = 0.

Suppose that a2(a30 − a2) 6= 0 and a = 1. Then F50 ≡ 0. If f = −1, then
F41 ≡ F32 ≡ 0 and we obtain the following set of conditions

8) a = 1, d = −2, f = −1, a1 = (2b + 3c)/4, a2 = (c − 2b)/4

for the existence of an invariant cubic curve
12(x2 + y2)(1 − y) + 3(2b + 3c)xy2 + (c − 2b + 8g)x3 = 0.

Assume that f 6= −1. Then we calculate the resultant of F41 and F32 with
respect to a2. We find that Res(F41, F32, a2) = −2(a1 − a30)

2h1h
2

2
, where

h1 = a2

1
− 3a1a30 − 2, h2 = 4a3

1
a30 − a2

1
− 18a1a30 + 27a2

30
+ 4.

Let h1 = 0. Then F32 = 0 yields a2

1
= 3 and we get the following set of conditions

9) a = 1, b = [(f + 2)(a1 − 3a2)]/2, c = (a1a2 − f + 2)/a1, d = f − 1, g =
[(b + c)a1 − 4]/a1, a2

1
= 3

for the existence of an invariant cubic 3a1(x
2 + y2)(1 − y) + x3 + 9xy2 = 0.

Let h1 6= 0 and h2 = 0. The equation h2 = 0 admits the following parametriza-
tion a1 = −(3u2 + 1)/(2u), a30 = (u3 − u)/2. In this case we have F32 ≡
(2ua2 − u2 + 1)(a2 + u) = 0 and obtain the following two sets of conditions for
the existence of an invariant cubic:

10) a = 1, b = [(f + 2)(3u2 − 1)]/(4u), c = (f − fu2 − 6u2)/(2u), d = f − 1, g =
(3u4 + fu2 + f + 1)/(4u), a1 = (−3u2 − 1)/(2u), a2 = −u.

The invariant cubic is 2u(x2 + y2) + (u2x − 2uy − x)(ux + y)2 = 0.

11) a = 1, b = [(f + 2)(1 − 3u2)]/(2u), c = (fu2 − 1)/u, d = f − 1, g =
[(3u2 − 2f − 3)(u2 − 1)]/(4u), a1 = (−3u2 − 1)/(2u), a2 = (u2 − 1)/(2u).

The invariant cubic is 2u(x2 + y2) + (u2x − 2uy − x)(ux + y)2 = 0.

3.2 Case a12 = a1, a21 6= −1

Let a12 = a1 and a21 6= −1. Then F22 ≡ 0 yields b = (f + 2)(a1 − 2a2).
3.2.1. j1 = 0, a30 = (a1a2(a1 − 2a2))/3. In this case a21 = −a1a2 and F50 ≡

(a − 1)a1a2f1f2 = 0, F41 ≡ (a1 + a2 − c)a1a2f1f2 = 0, F32 ≡ (f + 1)a1a2f1f2 = 0,
where f1 = a1 + a2, f2 = a1 − 3a2.
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Suppose that a1 = 0. Then the equation F40 = 0 implies c = 2(f + 1 + a)a2 and
F31 ≡ (2a + 2f + 1)(2a2 + 1)(2a2 − 1) = 0.

In this case we obtain the following three sets of conditions for the existence of
an invariant cubic x2 + y2 − y3 = 0 for system (5):

12) b = −f − 2, c = f + 1 + a, d = (2f + 3 − 2a)/2, g = a− 1, a1 = 0, a2 = 1/2;

13) b = f +2, c = −f −a−1, d = (2f +3−2a)/2, g = 1−a, a1 = 0, a2 = −1/2;

14) a = (−2f − 1)/2, b = 2c(−f − 2), d = 2(f + 1), g = b + c, a1 = 0, a2 = c.

Suppose that a1 6= 0 and a2 = 0. Then F40 = 0 implies c = a1(2a − 2f − 3)/2
and F31 = 0 yields a = (−2f − 1)/2. We have the following set of conditions

15) a = (−2f−1)/2, d = 2(f+1), c = −2b(f+1)/(f+2), g = −b(2f+3)/(2f+4),
a1 = b/(f + 2), a2 = 0

for the existence of an invariant cubic bxy2 + (f + 2)(x2 + y2 − y3) = 0.

Suppose that a1a2 6= 0 and a2 = −a1. Since F40 = 0, we obtain c = a1(a
2
1
−6f −

2a − 7)/2 and F31 ≡ (2a + 2f + 1 − a2
1
)(3a2

1
− 1)(a2

1
+ 1) = 0.

If a2

1
= 1/3, then we get the following set of conditions for the existence of an

invariant cubic:

16) b = 3(f + 2)a1, c = [−a1(3a + 9f + 10)]/3, d = f − a + 2, g = [a1(2 − 3a)]/3,
a2 = −a1, a2

1
= 1/3.

The invariant cubic is 3(x2 + y2) − (a1x − y)(x2 − 3y2) = 0.

If a2
1
6= 1/3 and 2a + 2f + 1− a2

1
= 0, then we get the following set of conditions

17) a = (a2

1
− 2f − 1)/2, b = 3(f + 2)a1, c = (−2f − 3)a1, d = 2a + 4f + 3,

g = (−3a − 2f)a1, a2 = −a1.

The invariant cubic is x2 + y2 − (a1x + y)(a1x − y)2 = 0.

Suppose that a1a2(a2 + a1) 6= 0 and a1 = 3a2. Then express c from F40 = 0 and
F31 = 0 yields 2a + 2f + 1 + 3a2

2
= 0. In this case we obtain the following set of

conditions

18) b = (f + 2)a2, d = 2a + 4f + 3, g = c − a2(a + 3), c = a2(1 − 2af + 17a −
2f2 + 7f)/[3(a + f + 1)], 3a2

2
+ 2a + 2f + 1 = 0, a1 = 3a2.

The invariant cubic is x2 + y2 + (a2x − y)3 = 0.

Suppose that a1a2(a2 + a1)(a1 − 3a2) 6= 0. Then the equations of (8) implies
a = 1, f = −1, c = a1 + a2 and the system of equations (9) has no real solutions.

3.2.2. j1 = 0, a30 6= (a1a2(a1 − 2a2))/3. In this case we express c from F32 = 0
and a from F41 = 0, then F50 ≡ j2j3j4j5 = 0.

Assume that j2 = 0. Then f = −1 and F40 = 0 yields a30 = −b. In this case the
system of equations (9) has no real solutions.
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Suppose that j2 6= 0 and j3 = 0. In this case a30 = a3
2

and the system (9) is
consistent iff (a1 − a2)(f + 2) = 0, in contradictions with assumption (10).

Let j2j3 6= 0 and j4 = 0, then a30 = a2
1
a2. This case is contained in 27).

Now let j2j3j4 6= 0 and j5 = 0. Then j5 = 0 admits the following parametrization
a2 = v(36 − 5v)/(12u(v − 9)), a1 = (v − 9)/u, a30 = v2(4v − 27)/(108u3).

We get the following set of conditions for the existence of an invariant cubic:

19) a = (18u2 − v(f + 1)(4v − 27))/(18u2), c = (2fv − 18f + v)(54 − 7v)/[12(v −
9)u], b = [(f + 2)(11v2 − 144v + 486)]/[6(v − 9)u], g = [(4v − 27)v2 + 72u3(c +
b) − 108(v − 9)u2]/(72u3), d = [4(2f + 3 − 2a)u2 + v(5v − 36)]/(8u2), f =
[3888(v − 9)u4 + 72u2(128v3 − 2889v2 + 21384v − 52488)− v3(167v2 − 2277v +
7776)]/[2592u4(9 − v) − 72u2(62v3 − 1431v2 + 10692v − 26244) + 8v2(4v −
27)2(2v − 9)], F40 ≡ 1296(v − 9)2u4 − 36vu2(11v2 − 144v + 486)(5v − 36) −
v3(47v2−603v+1944)(v−9) = 0, a2 = v(36−5v)/(12u(v−9)), a1 = (v−9)/u.

The invariant cubic is 108u3(x2 + y2) + (4vx − 27x − 3uy)(vx + 6uy)2 = 0.

3.2.3. j1 6= 0, j2 = 0. In this case f = −1, we express a from F32 = 0 and obtain

F50 ≡ [4a2
21

a30 + a2
21

a1a2(a1 − 2a2) + 2a21a30(a
2
1
+ 5a1a2 − 3a2

2
)+

+3a2
30

(2a1 + 3a2) + 4a30a
2
1
a2

2
](c − a1 − a2) = 0,

F41 ≡ [4a3
21

+ a2
21

(a2
1
+ 6a1a2 − 4a2

2
) + 2a21a30(3a2 − 2a1)+

+2a21a
2
1
a2(a1 − a2) − 9a2

30
+ 2a30a1a2(a1 − 3a2)](c − a1 − a2) = 0.

Assume that c = a1 + a2, then F50 ≡ 0 and F41 ≡ 0. In this case the system of
equations (9) has no real solutions.

Assume that a1 + a2 − c 6= 0. Then we calculate the resultant of F50 and F41

with respect to a2. We find that Res(F50, F41, a2) = f1f2j5, where f1 = a1a21 + a30,
f2 = a2

1
a21 + 3a1a30 + 2a2

21
, j5 = 27a2

30
+ 2a1a30(2a

2
1
+ 9a21) − a2

21
(a2

1
+ 4a21).

Let f1 = 0, then a30 = −a1a21 and F41 ≡ (a2
1
− a21)(a

2
2
− a21)a21 = 0.

The cases a21 = 0 and a21 = a2
1

are contained in 25) and 26), respectively.
Suppose that a21 = a2

2
. We express a from F31 = 0 and a1 from F40 = 0. In this

case we have the following set of conditions

20) a = (a3

2
− a2 + 2c)/(2a2), d = (a3

2
+ a2 − c)/a2, f = −1, b = a1 − 2a2,

g = (2c − 3a1a
2

2
− a1 − 4a2)/2, a1 = (a2 − 5a3

2
+ 3ca2

2
− c)/(2a2

2
).

for the existence of an invariant cubic x2 + y2 − (a1x − y)(a2x − y)(a2x + y) = 0.

Let f1 6= 0 and f2 = 0. Then a30 = −a21(a
2
1

+ 2a21)/(3a1) and F41 = 0 yields
a21 = −a2

1
/3. We express c from F31 = 0 and this case is contained in 29).

Let f1f2 6= 0 and j5 = 0. The equation j5 = 0 admits the following parametriza-
tion a30 = [(4a1v +9)(a1v +9)2]/(108v3), a21 = [(5a1v +9)(a1v +9)]/(12v2). In this
case F50 ≡ h1h2 = 0, where h1 = a1v + 6a2v + 9, h2 = 4a1v − 3a2v + 9.

If h1 = 0, then F31 = 0 has no real solutions. If h1 6= 0, h2 = 0, then v =
9/(3a2 − 4a1) and express c from F31 = 0. In this case F40 ≡ e1e2 = 0, where
e1 = 3a2

1
− 2a1a2 − a2

2
+ 4, e2 = a2

1
− 6a1a2 + 5a2

2
− 4.
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Suppose that e1 = 0. The equation e1 = 0 admits the following parametrization
a1 = (u2 − 4)/(4u), a2 = (−3u2 − 4)/(4u) and this case is contained in 24).

Suppose e1 6= 0 and e2 = 0. The equation e2 = 0 have the following parametriza-
tion a1 = (5u2 − 4)/(4u), a2 = (u2 − 4)/(4u). This case is contained in 23).

3.2.4. j1j2 6= 0, j3 = 0. In this case a30 = a2(a
2
2
− a1a2 − a21). We express

a from F32 = 0 and obtain that F41 ≡ g1g2g3g4 = 0, where g1 = a2
2
− a21, g2 =

2a1a2 − 3a2
2
+ a21, g3 = a2

1
+ 2a1a2 − 3a2

2
+ 4a21, g4 = (a1 − a2)f − 2a2 + c.

Assume that g1 = 0. If f = (−3)/2, then this case is contained in 27). If
2f + 3 6= 0, then we obtain the following set of conditions for the existence of an
invariant cubic:

21) a = (a2
2
+ 2f + 5)/2, b = −(f + 2)(3a2

2
+ 1)/(2a2), c = (fa2

2
+ 3a2

2
+ f + 1)/a2,

d = a2
2
− 1, g = (2f + 3 − 3a4

2
− 2fa2

2
)/(4a2), a1 = (a2

2
− 1)/(2a2).

The invariant cubic is 2a2(x
2 + y2) − (a2

2
x − 2a2y − x)(a2x + y)(a2x − y) = 0.

Assume that g1 6= 0 and let g2 = 0. Then a21 = a2(3a2 − 2a1) and F41 ≡ 0. In
this case we get the following set of conditions

22) a = (2−u2(a2
2
+2a2u−3))/[2(u2 +1)], f = (−a2

2
−2a2u−4u2−3)/[2(u2 +1)],

g = (3a1a
2
2
− 3a1 − 6a3

2
+ 2b + 2c)/2, d = (3 + 2f − 2a − 6a1a2 + 9a2

2
)/2,

2u2(c+11b−4u)+u((2b+c)2−9)+18b = 0, a1 = 2a2+u, a2 = (c−2u+2b)/3.

for the existence of an invariant cubic x2 + y2 + (ux − y)(a2x − y)2 = 0.

Assume that g1g2 6= 0 and let g3 = 0. Then a21 = (3a2
2
− a2

1
− 2a1a2)/4 and

F41 ≡ 0. In this case we express c from F31 = 0 and find that F40 ≡ s1s2 = 0, where
s1 = a2

1
− 6a1a2 + 5a2

2
− 4, s2 = (2f + 5)a2

1
− (4f + 6)a1a2 + (2f + 1)a2

2
+ 8f + 12.

If s1 = 0, then this equation admits the following parametrization a1 = (5u2 −
4)/(4u), a2 = (u2 − 4)/(4u). In this case we obtain the following set of conditions
for the existence of an invariant cubic:

23) a = (8fu2 + (u2 + 4)2)/[4(4 − u2)], d = (8f − 8a + 12 − 3a2
1
− 6a1a2 + 9a2

2
)/8,

b = ((f + 2)(3u2 + 4))/(4u), c = ((3 − f)u4 + 12fu2 + 16)/[2u(u2 − 4)],
g = (3a2(a1−a2)

2−12a1+8(b+c))/8, a1 = (5u2−4)/(4u), a2 = (u2−4)/(4u).

The invariant cubic is 16u(x2 + y2) + (u2x − 4x − 4uy)(ux − 2y)2 = 0.

Let s1 6= 0 and s2 = 0. In this case we get the following set of conditions for the
existence of an invariant cubic:

24) b = [((8a + 5u2 − 12)u2 + 32(a− 1))(a− 1)]/u5, c = [(u2 + 8− 8a)(u2 + 2)]/u3,
d = [(2a− 5)u2 + 16(a− 1)]/u2, f = 2(2a− 2−u2)/u2, g = [a2u(16a2 + 3u3 +
20u)]/[8(u2 + 4)], a1 = a2 + u, a2 = [32(1 − a) + u2(12 − 8a − u2)]/(4u3).

The invariant cubic is 4(x2 + y2) + (a1x − a2x − 2y)2(a2x − y) = 0.

Assume that g1g2g3 6= 0 and let g4 = 0. Then c = (f + 2)a2 − fa1 and F41 ≡ 0.
In this case the system of equations {F40 = 0, F31 = 0} is consistent if and only if
(a1 − a2)(f + 2) = 0, in contradiction with assumption (10).
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3.2.5. j1j2j3 6= 0, j4 = 0. In this case a30 = −a1a21. We express a from F32 = 0
and obtain that F41 ≡ h1h2h3 = 0, where h1 = a21, h2 = a2

1
− a21, h3 = a1 + a2 − c.

Let h1 = 0. If f = (−3)/2, then this case is contained in 27). If 2f +3 6= 0, then
we get the following set of conditions for the existence of an invariant cubic:

25) a = 1, b = −[(f + 2)(4a2
2
+ 1)]/(4a2), c = (4a2

2
+ f + 1)/(2a2), d = (2f + 1)/2,

g = [(2f + 3)(1 − 4a2
2
)]/(8a2), a1 = (4a2

2
− 1)/(4a2).

The invariant cubic is 4a2(x
2 + y2) + (4a2

2
x − 4a2y − x)y2 = 0.

Suppose that h1 6= 0 and h2 = 0. Then a21 = a2

1
. We express c from F31 = 0

and F40 ≡ i1i2 = 0, where i1 = 2f + 3, i2 = (5a2

1
− 4a1a2 + 2)a2

1
+ 4a2(a1 − a2) + 1.

Let i1 = 0, then f = (−3)/2 and this case is contained in 27). Assume that
i1 6= 0 and let i2 = 0. The equation i2 = 0 admits the following parametrization
a1 = (u2 − 1)/(2u), a2 = (5u4 − 2u2 + 1)/(8u3). In this case we find the following
set of conditions for the existence of an invariant cubic:

26) a = (4fu2 − 4f + u4 + 12u2 − 5)/(8u2), c = (4fu4 + 4fu2 + 15u4 + 1)/(8u3),
b = −[(f+2)(3u4+1)]/(4u3), d = (2fu2+2f+u4−3u2+4)/(4u2), g = −[(4f+
3u2 + 3)(u2 − 1)2]/(16u3), a1 = (u2 − 1)/(2u), a2 = (5u4 − 2u2 + 1)/(8u3).

The invariant cubic is x2 + y2 − (a1x + y)(a1x − y)2 = 0.

Suppose that h1h2 6= 0 and h3 = 0. In this case a1 = c− a2, f = (−3)/2 and we
get the following set of conditions for the existence of an invariant cubic:

27) d = 2a− 3, f = (−3)/2, g = 2(1− a)(b + c), a1 = 2(b + c)/3, a2 = (c− 2b)/3.

The invariant cubic is 3(x2 + y2) − (2ax2 − 2x2 − y2)(2bx + 2cx − 3y) = 0.

3.2.6. j1j2j3j4 6= 0, j5 = 0. The equation j5 = 0 admits the following
parametrization a30 = (4a3

1
u3 + 81a2

1
u2 + 486a1u + 729)/(108u3), a21 = (5a2

1
u2 +

54a1u+81)/(12u2). We reduce the equations F50 = 0 and F41 = 0 by a from F32 = 0.
Then F41 ≡ s1s2 = 0, where s1 = a1u + 3, s2 = (7a1f + a1 − 6a2 + 6c)u + 9f + 9.

Assume that s1 = 0, then a1 = (−3)/u. We express c from F31 = 0 and
substituting in (9) we obtain that F40 ≡ r1r2 = 0, where

r1 = (2f + 3)u2 + 2f + 7, r2 = (4a2
2
− 1)u4 + 12a2u

3 + 4a2u + 6u2 + 3.

Let r1 = 0, then f = (−3u2 − 7)/[2(u2 + 1)] and we get the following set of
conditions for the existence of an invariant cubic:

28) a = (2u4 + 3u2 − 3)/[2u2(u2 + 1)], b = (2a2u + 3)(3 − u2)/[2u(u2 + 1)], c =
[a2u(u2 + 1) − 3u2 − 7]/[u(u2 + 1)], d = −(u4 + 8u2 + 3)/[u2(u2 + 1)], f =
−(3u2 + 7)/[2(u2 + 1)], g = (8a2u

3 + u2 − 3)/[2u3(u2 + 1))], a1 = (−3)/u.

The invariant cubic is u3(x2 + y2) − (x + uy)3 = 0.

Assume that r1 6= 0 and let r2 = 0. The equation r2 = 0 admits the following
parametrization a2 = (1 + 6v2 − 3v4)/(8v3), u = (2v)/(v2 − 1). In this case we have
the following set of conditions for the existence of an invariant cubic:
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29) a = [4f(1− v2)(3v2 − 1)− (v2 + 1)(3v4 + 5)]/[8v2(v2 − 3)], b = −(f + 2)(3v4 +
1)/(4v3), c = [(4f − 17)v6 + (19 − 40f)v4 + (20f − 31)v2 − 3]/[8v3(v2 − 3)],
d = [2(f + 8) − 3v6 + 10(f + 3)v4 − (20f + 47)v2]/[4v2(v2 − 3)], g = [(1 −
v2)(3v6+(4f+7)v4+(48f+77)v2+12f+9)]/[16v3(v2−3)], a1 = 3(1−v2)/(2v),
a2 = (1 + 6v2 − 3v4)/(8v3).

The invariant cubic is 8v3(x2 + y2) − ((v2 − 1)x + 2vy)3 = 0.

Suppose that s1 6= 0 and s2 = 0. Then a2 = (7a1fu + a1u + 6cu + 9f + 9)/(6u).
We express c from F31 = 0 and obtain that F40 ≡ u2(256f2 + 768f + 527)a2

1
+

18u(64f2 + 192f + 137)a1 + 9[16f(f + 3)(u2 + 9) + 9(4u2 + 35)] = 0. The equation
F40 = 0 has the following parametrization a1 = 3(3 − 3h2 + 2hu)/[4u(h2 − 1)],
f = (9− 24h2u− 9h2 + 14hu − 24u)/[16u(h2 + 1)]. In this case we get the following
set of conditions for the existence of an invariant cubic

30) b = (f + 2)(a1 − 2a2), f = (9 − 24h2u − 9h2 + 14hu − 24u)/[16u(h2 + 1)],
d = [u2(12− 8a+8f +5a2

1
)+54ua1 +81]/(8u2), a = [4u2(16h6 − 12h4 − 7h3 −

12h2+16)+36uh(2h4−3h3+3h−2)+81h(h4−2h2+1)]/[64u2(h2+1)(h2−1)2],
g = [4u3(a3

1
−27a1+18b+18c)+81u2a2

1
+486ua1+729]/(72u3), c = [4u2(8h6+

34h5 − 100h4 +117h3 − 100h2 +34h+8)+36u(7− 7h6 +18h5 − 14h4 +14h2 −
18h) + 81h(h4 − 2h2 + 1)]/[64u2(h2 + 1)(h + 1)(h − 1)3], a1 = 3(3 − 3h2 +
2hu)/[4u(h2 − 1)], a2 = (7a1fu + a1u + 6cu + 9f + 9)/(6u).

The invariant cubic is 108u3(x2 + y2) + (4ua1x − 3uy + 9x)(uxa1 + 6uy + 9x)2 = 0.

3.3 Case a12 = a2

The case a12 = a2 is equivalent with a12 = a1 if we take into consideration the
symmetry Fij(a1, a2) = Fij(a2, a1) in the algebraic system {(8), (9)}.

4 Sufficient conditions for the existence of a center

In this section we derive sixteen sets of sufficient conditions for the origin to be a
center for cubic system (1) by constructing integrating factors or first integrals from
invariant functions.

Lemma 1. The following three sets of conditions are sufficient conditions for the
origin to be a center for system (1):

(i) a = 1, b = l = s = 0, d = f − 1, k = g = (ca1 − 4)/a1, m = (4ca1 + 3f −
13)/3, n = 2r, p = (8 − ca1 + 4f)/a1, q = −2g, r = −(f + 1), a2

1
= 3;

(ii) a = 1, d = −2, f = −1, k = g, l = −b, m = (3c2 − 4b2 − 4bc − 16)/16,
n = −m, p = b, q = −g, r = s = 0;
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(iii) d = 2a − 3, f = (−3)/2, g = 2(1 − a)(b + c), k = (1 − a)(2b + c), l = −b,
m = (9a − 4b2 − 2bc + 2c2 − 9)/9, n = (18 − 18a + 2b2 + bc − c2)/9, p =
(2b − c)/2, q = 2(a − 1)(b + c), r = 1/2, s = 2(a − 1)(2b − c)(b + c)/9.

Proof. In Cases (i)–(iii), system (1) has a Darboux first integral of the form
lα
2
Φ = C.

In Case (i): l2 = x+a1(1−y), Φ = 12(x2+y2)(1−y)+(c−g)(x3+9xy2), α = −3.
In Case (ii): l2 = 4 + (c − 2b)x − 4y, Φ = 12(x2 + y2)(1 − y) + 3(2b + 3c)xy2 +

(c − 2b + 8g)x3, α = −3.
In Case (iii): l2 = 3(1− y)+ (c− 2b)x, Φ = 3(x2 + y2)− (2ax2 − 2x2 − y2)(2bx+

2cx − 3y), α = −2.

Lemma 2. The following seven sets of conditions are sufficient conditions for the
origin to be a center for system (1):

(i) b = (−1)/5, a = −3b, c = 18b, d = 14b, f = 11b, g = −2b, k = q = 2b,
l = −b, m = n = −9b, p = 21b, r = −6b, s = 0;

(ii) b = 1/5, a = 3b, c = −18b, d = −14b, f = −11b, g = −2b, k = q = 2b,
l = −b, m = n = 9b, p = 21b, r = 6b, s = 0;

(iii) b = (−1)/5, d = 6b, f = 9b, p = b, r = −4b, l = n = −b, c = 1/10,
a = 9c, g = −c, m = −3c, q = c, k = (−3)/20, s = 0;

(iv) b = 1/5, d = −6b, f = −9b, l = −b, n = p = b, r = 4b, c = (−1)/10,
a = −9c, g = −c, m = 3c, q = c, k = 3/20, s = 0;

(v) a = (−2f − 1)/2, c = −da1, d = −2r, g = (na1)/2, k = 2g, n = −2f − 3, l =
−b, m = n(2a2

1
− 3)/2, p = −4g, q = −g, r = −f − 1, s = 0, a1 = b/(f + 2);

(vi) a = (1 − 5f − 2f2)/(2f + 7), c = (1 − 2f)a2, d = 2a + 4f + 3, g = c −
(a + 3)a2, k = 4(a − 1)a2 + g, l = −b, m = [(11f + 21)(2f + 3)]/(2f + 7),
n = [(2f + 3)(f − 4)]/(2f + 7), p = (7f + 9)a2, q = 12a3

2
− 3ca2

2
− g, r =

−f − 1, s = 3(1 − a)a2
2
, (2f + 7)b2 + (2f + 3)(f + 2)2 = 0, a2 = b/(f + 2);

(vii) a = [2−u2(a2
2
+2a2u−3)]/[2(u2 +1)], f = (−a2

2
−2a2u−4u2−3)/[2(u2 +1)],

g = (3a1a
2

2
− 3a1 − 6a3

2
+ 2b + 2c)/2, d = (3 + 2f − 2a − 6a1a2 + 9a2

2
)/2,

2u2(c + 11b − 4u) + u((2b + c)2 − 9) + 18b = 0, k = (a − 1)(a1 + a2) + g,
l = −b, s = (1 − a)a1a2, m = −a2

1
− a1a2 − a2

2
+ c(a1 + a2) − a + d + 2,

r = −f − 1, n = a1a2(−f − 2) − (d + 1), p = (f + 2)(a1 + a2) + b − c,
q = (2b − u)a1a2 − g, a2 = (c − 2u + 2b)/3, a1 = (4b + 2c − u)/3.

Proof. In Cases (i)–(vii), system (1) has a Darboux integrating factor of the form
µ = lα1

1
lα2
2

Φα3 .
In Case (i): l1 = 1 + 2x − y, l2 = 1 − y, Φ = x2 + y2 − y(x − y)2, α1 = 1,

α2 = 1/2, α3 = (−5)/2.
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In Case (ii): l1 = 1 − 2x − y, l2 = 1 − y, Φ = x2 + y2 − y(x + y)2, α1 = 1,
α2 = 1/2, α3 = (−5)/2.

In Case (iii): l1 = 1 − y, l2 = 2 + x − 2y, Φ = x2 + y2 − y3, α1 = 1/2,
α2 = 1, α3 = (−5)/2.

In Case (iv): l1 = 1 − y, l2 = 2 − x − 2y, Φ = x2 + y2 − y3, α1 = 1/2,
α2 = 1, α3 = (−5)/2.

In Case (v): l1 = (f + 2)(1 − y) + bx, l2 = 1 − y, Φ = (f + 2)(x2 + y2) + (bx −
y(f + 2))y2, α1 = 0, α2 = 1, α3 = −2.

In Case (vi): l1 = 3bx+(f +2)(1−y), l2 = bx+(f +2)(1−y), Φ = (f +2)3(x2 +
y2) + (bx − (f + 2)y)3, α1 = 0, α2 = 1, α3 = −2.

In Case (vii): l1 = (4b + 2c − u)x + 3(1 − y), l2 = (c + 2b − 2u)x + 3(1 − y),
Φ = 9(x2 + y2) + ((2u − 2b − c)x + 3y)2(xu − y), α1 = 0, α2 = 1, α3 = −2.

Lemma 3. The following six sets of conditions are sufficient conditions for the
origin to be a center for system (1):

(i) a = 3/2, b = (7c)/6, d = −3, f = (−3)/2, g = (−11c)/6, k = −3p, l = −b,
m = (−41)/6, n = 9/2, p = c/2, q = 7p, r = 1/2, s = 5/2, c2 − 3 = 0;

(ii) a = 5/6, c = 6g, d = −3, f = (−13)/6, g = −5b, k = g/3, m = 19/54, l =
−b, n = 37/18, p = (103b)/3, q = (25b)/3, r = 7/6, s = 1/18, 108b2 − 1 = 0;

(iii) a = 2/(5u2), b = (8 − 5u2)/(20u), c = (169u2 − 76)/(10u3), d =
(44 − 105u2)/(20u2), f = (4 − 45u2)/(20u2), g = (9u2 − 4)/(2u3), k =
(20 − 49u2)/(10u3), l = −b, m = (1215u2 − 508)/(25u4), n = (45u2 −
24)/(10u2), p = 23(4 − 9u2)/(10u3), q = 3(8 − 19u2)/(5u3), r = −f − 1, s =
(5u2 − 2)/(5u2), 5u4 − 40u2 + 16 = 0;

(iv) a = 7(11u2 − 1)/(40u4), b = (7 − 85u2)/(200u5), c = (185u2 − 19)/(100u5),
d = (5 − 47u2)/(20u2), f = (1 − 75u2)/(40u2), g = (1 − 3u2)/(40u5),
k = (9 − 35u2)/(200u5), l = −b, m = (23 − 229u2)/(200u6), n = (105u2 −
11)/(200u6), p = (37 − 375u2)/(200u5), q = (65u2 − 11)/(200u5), r =
−f − 1, s = (5u2 + 1)/(200u6), 5u4 − 10u2 + 1 = 0;

(v) a = (ha1)/(h
2−1), b = (ha1)/(h−1)2, c = [h(14h−11h2−11)a1]/[(h

2+1)(h−
1)2], f = (h−2h2−2)/(h2+1), d = [12(39h3−49h2+28h+7)]/[(h2+1)(h2−1)2],
g = [24h(27h3 − 35h2 + 20h + 5)]/[(h2 + 1)(1− h2)3], k = (a− 1)(a1 + a2) + g,
l = −b, s = (1 − a)a1a2, m = −a2

1
− a1a2 − a2

2
+ c(a1 + a2) − a + d + 2,

r = −f − 1, n = a1a2(−f − 2) − (d + 1), p = (f + 2)(a1 + a2) + b − c,
q = (a1 + a2 − c)a1a2 − g, a2 = (−ha1)/(h− 1)2, a1 = 2(h2 − h + 1)/(1− h2),
h4 + 4h3 − 6h2 + 4h + 1 = 0;

(vi) a = 2, c = [b(h − 2)(1 − 2h)]/(h2 + 1), f = (h − 2h2 − 2)/(h2 + 1), b =
(ha1)/(h − 1)2, d = (−6h3)/[(h2 + 1)(h2 − 1)2], g = [6h(10h3 + 3h2 + 6h −
3)]/[(h2 + 1)(h2 − 1)3], k = (a − 1)(a1 + a2) + g, l = −b, s = (1 − a)a1a2,
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m = −a2
1
− a1a2 − a2

2
+ c(a1 + a2) − a + d + 2, n = a1a2(−f − 2) − (d + 1),

r = −f − 1, p = (f + 2)(a1 + a2) + b − c, q = (a1 + a2 − c)a1a2 − g, a2 =
(−ha1)/(h − 1)2, a1 = 2(h2 − h + 1)/(1 − h2), h4 − 2h3 − 2h + 1 = 0.

Proof. When conditions (i)–(vi) hold the cubic system (1) is Darboux integrable
having three invariant straight lines and one invariant cubic curve. It has an inte-
grating factor of the form µ = lα1

1
lα2
2

lα3
3

Φα4 in Cases (i)–(iv) and a first integral
lα1
1

lα2
2

lα3
3

Φα4 = C in Cases (v) and (vi).

In Case (i): l1 = c + 5x − cy, l2 = 1 − cx − y, l3 = c − 4x − 4cy, Φ =
2c(x2 + y2) + (x − c2x − 2cy)(y − cx)2, α1 = α3 = (−3)/2, α2 = (−5)/2, α4 = 1.

In Case (ii): l1 = 6b − x − 6by, l2 = 3 − 6bx − 3y, l3 = 27b − 2x − 36by, Φ =
54b(x2 + y2)(y − 1) + x(x2 + 9y2), α1 = (−3)/2, α2 = α3 = (−5)/2, α4 = 1.

In Case (iii): l1 = 4u + (5u2 − 4)x − 4uy, l2 = 4u + (u2 − 4)x − 4uy, l3 =
8u2 + (7u2 − 4)(ux − 2y), Φ = 16u(x2 + y2) + (u2x − 4x − 4uy)(ux − 2y)2, α1 =
α2 = α3 = 1, α4 = −3.

In Case (iv): l1 = 2u+(u2−1)x−2uy, l2 = u+x−uy, l3 = 8u3+(1−u4)x−2u(1+
u2)y, Φ = 8u3(x2+y2)−(u2x−x+2uy)(u2x−x−2uy)2, α1 = α2 = α3 = 1, α4 = −3.

In Case (v): l1 = (1− h2)(1− y) + 2(h2 − h + 1)x, l2 = (h + 1)(h − 1)3(1− y) +
2h(h2 −h+1)x, l3 = (h4 − 1)(h− 1)2 − (h2 −h+1)(h2 − 4h+1)(h2x+x+h2y− y),
Φ = (h2 − 1)3(x2 + y2) + (2hx−h2y + y)(h2x + x + h2y− y)2, α1 = 1, α2 = α3 = 2,
α4 = −2.

In Case (vi): l1 = (1 − h2)(1 − y) + 2(h2 − h + 1)x, l2 = (1 − 2h)(y − 1) + (h3 −
h2 + h)x, l3 = 6h3x + (h2 + 1)(2h − 1)(1 − 3y), Φ = (h2 − 1)3(x2 + y2) + (2hx −
h2y + y)(h2x + x + h2y − y)2, α2 = 2, α1 = α3 = 1, α4 = −2.

5 Solution of the problem of the center for a cubic system with a

bundle of two invariant straight lines and one invariant cubic

Theorem 4. Let the cubic system (1) have a bundle of two invariant straight lines
(4) and one invariant cubic (6). Then a singular point O(0, 0) is a center if and
only if the first three Lyapunov quantities vanish.

Proof. To prove the theorem, we compute the first three Lyapunov quantities L1, L2

and L3 in each series of conditions 1) – 30) obtained in Section 3 by using the algo-
rithm described in [9]. In the expressions for Lj we will neglect the denominators
and non-zero factors.

In Case 1) we have L1 = 0, then Lemma 1, (i).

In Case 2) the first Lyapunov quantity is L1 = a2 +f2−a+3f +2. We calculate
L2 and reduce it by a2 from L1 = 0. Then L2 = 0 yields a = (8f2+27f+16)/(4f+1)
and L1 becomes L1 = (8f2 + 20f + 11)(5f + 11)(f + 1). If f = −1, then Lemma 1,
(ii) (b = 1, c = 2). If f = (−11)/5, then Lemma 2, (i).
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Assume that (f + 1)(5f + 11) 6= 0 and let 8f2 + 20f + 11 = 0. In this case the
equation L1 = 0 has real solutions and L3 6= 0. Therefore the origin is a focus.

In Case 3) the first Lyapunov quantity is L1 = a2 +f2−a+3f +2. We calculate
L2 and reduce it by a2 from L1 = 0. Then L2 = 0 yields a = (8f2+27f+16)/(4f+1)
and L1 becomes L1 = (8f2 + 20f + 11)(5f + 11)(f + 1). If f = −1, then Lemma 1,
(ii) (b = −1, c = −2). If f = (−11)/5, then Lemma 2, (ii).

Suppose that (f + 1)(5f + 11) 6= 0 and 8f2 + 20f + 11 = 0. In this case the
equation L1 = 0 has real solutions and L3 6= 0. Therefore the origin is a focus.

In Case 4) the vanishing of L1 gives a = 1, then Lemma 1, (ii) (c = 2b).

In Case 5) the vanishing of the first Lyapunov quantity gives a1 = 3a2, then
F32 ≡ 9a4

2
− 5a2

2
+ 1 = 0 has no real solutions. In this case the origin is a focus.

In Case 6) the vanishing of the first Lyapunov quantity gives f = 2(u2 − 2u4 −
3)/(3u4 − 2u2 + 3), then L2 = f1f2, where f1 = u2 − 3, f2 = 3u6 + 5u4 + 9u2 − 9. If
f1 = 0, then Lemma 3, (i). Assume f1 6= 0 and let f2 = 0. The equation f2 = 0 has
real solutions and L3 6= 0. Therefore the origin is a focus.

In Case 7) the first Lyapunov quantity is L1 = 9a2 − 13a + 3f2 + 9f + 10. We
calculate L2 and reduce it by f2 from L1 = 0. Then L2 = 0 yields f = (216a2 −
519a + 185)/[9(12a − 5)] and L1 becomes L1 = (21a− 10)(9a − 4)(9a− 10)(6a− 5).

If a = 5/6, then Lemma 3, (ii). Suppose that 6a− 5 6= 0. If a = 10/9 or a = 9/4
or a = 10/21, then L1 = L2 = 0 and L3 6= 0. In these subcases the origin is a focus.

In Case 8) the first Lyapunov quantity vanishes, then Lemma 1, (ii).

In Cases 9), 10) and 11) we have L1 6= 0. Therefore the origin is a focus.

In Case 12) the first Lyapunov quantity is L1 = 2a2 − 5a + 2f2 + 7f + 9. We
reduce L2 by a2 from L1 = 0. Then L2 = 0 yields a = (9−22f −16f2)/[2(16f +27)]
and L1 becomes L1 = (32f2 + 120f + 111)(5f + 9)(2f + 3). If f = (−3)/2, then
Lemma 1, (iii) (a = 1, b = −1/2, c = 1/2). If f = (−9)/5, then Lemma 2, (iii).

Assume (2f + 3)(5f + 9) 6= 0 and let 32f2 + 120f + 111 = 0. In this case the
equation L1 = 0 has real solutions and L3 6= 0. Therefore the origin is a focus.

In Case 13) the first Lyapunov quantity is L1 = 2a2 − 5a + 2f2 + 7f + 9. We
reduce L2 by a2 from L1 = 0. Then L2 = 0 yields a = (9−22f −16f2)/[2(16f +27)]
and L1 becomes L1 = (32f2 + 120f + 111)(5f + 9)(2f + 3). If f = (−3)/2, then
Lemma 1, (iii) (a = 1, b = 1/2, c = −1/2). If f = (−9)/5, then Lemma 2, (iv).

Assume that (2f + 3)(5f + 9) 6= 0 and 32f2 + 120f + 111 = 0. In this case the
equation L1 = 0 has real solutions and L3 6= 0. Therefore the origin is a focus.

In Case 14) the vanishing of L1 gives f = (−3)/2, then Lemma 1, (iii) (a =
1, c = −b).

In Case 15) we find that L1 = 0, then Lemma 2, (v).

In Case 16) the first Lyapunov quantity is L1 = 9a2−21a+27f2+99f +100. We
reduce L2 by a2 from L1 = 0. Then L2 = 0 yields a = (18f2 + 84f + 89)/[6(3f + 5)]
and L1 becomes L1 = (72f3 + 396f2 + 720f + 433)(2f + 3). If f = (−3)/2, then
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Lemma 1, (iii) (c = 0, b2 = 3/4). Let 2f +3 6= 0 and 72f3 +396f2 +720f +433 = 0.
In this case the equation L1 = 0 has real solutions and L3 6= 0. Therefore the origin
is a focus.

In Case 17) the vanishing of L1 gives f = (−3)/2, then Lemma 1, (iii) (a =
(2b2 + 9)/9, c = 0).

In Case 18) the vanishing of the first Lyapunov quantity gives a = −(2f2 +5f −
1)/(2f + 7), then Lemma 2, (vi).

In Case 19) we calculate the resultant of F40 and L1 with respect to v. We find
that Res(F40, L1, v) = (27556u6 − 14040u4 − 17496u2 + 177147)(841u4 − 4374u2 +
6561)2(17u2 + 54u + 81)3(17u2 − 54u + 81)3(u2 + 1)8u36 6= 0. The origin is a focus.

In Case 20) the first Lyapunov quantity is L1 = c2(3a4
2
−1)+ca2(2−9a4

2
+3a2

2
)+

a2
2
(6a4

2
−7a2

2
−1). We reduce L2 by c2 from L1 = 0. Then express c from L2 = 0 and

L1 becomes L1 = 245025a22
2

+1239975a20
2

− 429264a18
2

− 5822568a16
2

+1182522a14
2

+
5547390a12

2
− 1322072a10

2
− 1639888a8

2
+ 405789a6

2
+ 88067a4

2
− 4688a2

2
+ 784. The

equation L1 = 0 has real solutions and L3 6= 0. In this case the origin is a focus.

In Cases 21), 24), 25) and 28) we find that L1 6= 0. The origin is a focus.

In Case 22) the first Lyapunov quantity vanishes, then Lemma 2, (vii).

In Case 23) the vanishing of the first Lyapunov quantity gives f = 4(6u2 −
3u4 − 8)/(5u4 − 8u2 + 16), then L2 = e1e2, where e1 = 5u4 − 40u2 + 16, e2 =
15u6 − 12u4 − 48u2 − 64. If e1 = 0, then Lemma 3, (iii). Let e1 6= 0 and e2 = 0. The
equation e2 = 0 has real solutions and L3 6= 0. Therefore the origin is a focus.

In Case 26) the vanishing of L1 gives f = (4u2 − 17u4 − 3)/[2(5u4 − 2u2 + 1)],
then L2 = e1e2, where e1 = 5u4 − 10u2 + 1, e2 = 15u6 − 3u4 − 3u2 − 1. If e1 = 0,
then Lemma 3, (iv). Let e1 6= 0 and e2 = 0. The equation e2 = 0 has real solutions
and L3 6= 0. Therefore the origin is a focus.

In Case 27) the first Lyapunov quantity vanishes, then Lemma 1, (iii).

In Case 29) the first Lyapunov quantity is L1 = Af2 + Bf + C, where A =
4(9v6 − 25v4 + 27v2 − 3)(v2 + 1), B = 4(42v8 − 89v6 + 33v4 + 85v2 − 15), C =
195v8 − 478v6 + 284v4 + 254v2 − 63.

Let A = 0. The equation A = 0 has real solutions and L1 = 0 yields f = (−C)/B.
In this case L2 6= 0.

Now let A 6= 0. We reduce L2 by f2 from L1 = 0 and express f from L2 = 0.
Then L1 becomes L1 = 405v16−3456v14+10260v12−15328v10+16054v8−13248v6+
6340v4 − 352v2 + 93. The equation L1 = 0 has real solutions and L3 6= 0. In this
case the origin is a focus.

In Case 30) the vanishing of L1 gives u = [9(h2 − 1)]/[2(4h2 − h + 4)], then
L2 = e1e2, where e1 = h4 + 4h3 − 6h2 + 4h + 1, e2 = h4 − 2h3 − 2h + 1. If e1 = 0,
then Lemma 3, (v) and if e2 = 0, then Lemma 3, (vi).
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MD2069, Republic of Moldova

E-mail: dcozma@gmail.com

Anatoli Dascalescu

Institute of Mathematics and Computer Science
5 Academiei str., Chişinău
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