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Pretorsions in modules and associated closure

operators

A. I.Kashu

Abstract. This article contains the results on the pretorsions of the module category
R-Mod and on the closure operators defined by them. The pretorsions of R-Mod can
be described in diverse forms: by classes of modules, filters of left ideals of R, closure
operators, dense submodules, etc. In the set PT of pretorsions of R-Mod the main
operations are studied, as well as their expressions in terms of classes of modules,
filters, operators, etc. The approximations of pretorsions by jansian pretorsions and
by torsions are mentioned.
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1 Introduction. Preliminary notions and facts

In this work the pretorsions of a module category R-Mod and the associated
closure operators are studied. The main operations in the set PT of pretorsions
of R-Mod are investigated. The multilateral descriptions of pretorsions of R-Mod
are accentuated. Pretorsions of R-Mod can be considered as subfunctors of the
identity functor of R-Mod (r); as pretorsion classes of R-Mod (Tr); as filters of left
ideals of R (Er); as closure operators of the lattice L(RR) of left ideals of R (tr);
as closure operators of the category R-Mod (Cr); as functions defined by dense
submodules (FFFr

s).

The main operations in PR are investigated and the representations of them by
corresponding constructions (Tr,Er, C

r, etc.) are indicated. For the given pretorsion
r ∈ PT the least jansian pretorsion or torsion containing r is shown.

Let R be a ring with unit 1 6= 0 and R-Mod be the category of unitary
left R-modules. A preradical r of R-Mod is a subfunctor of identity functor of
R-Mod, i.e. r(M) ⊆ M for every M ∈ R-Mod and f

(
r(M)

)
⊆ r(M ′) for every

R-morphism f : M → M ′ of R-Mod. A preradical r is hereditary (or pretorsion) if
r(N) = r(M) ∩ N for every N ∈ L(M), where L(M) is the lattice of submodules
of M [1–4].
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We denote by PR the class of all preradicals of R-Mod, and by PT the class
(set) of all pretorsions of R-Mod. Every preradical r ∈ PR defines two classes of
modules:

Tr = {M ∈ R-Mod | r(M) = M} – the class of r-torsion modules;

Fr = {M ∈ R-Mod | r(M) = 0} – the class of r-torsionfree modules.

The class K ⊆ R-Mod is called pretorsion class if it is closed under homomorphic
images and direct sums. If K ⊆ R-Mod is closed under submodules, it is called
hereditary class. It is well known the following description of pretorsions by classes
of modules [1–4].

Proposition 1.1. There exists a monotone bijection between the pretorsions of

R-Mod and hereditary pretorsion classes of R-Mod. It is defined by the rules:

r  Tr, T  rT, where rT(M) =
∑

α∈A

{Nα ∈ L(M) | Nα ∈ T}.

An important peculiarity of pretorsions consists in the fact that they can be
characterized by the special sets of left ideals of R ([1–4]). A set of left ideals
E ⊆ L(RR) is called a preradical filter (left linear topology, topologizing filter) if the
following conditions are satisfied:

(a1) If I ∈ E and a ∈ R, then (I : a) = {x ∈ R | xa ∈ I} ∈ E;

(a2) If I ∈ E and I ⊆ J , J ∈ L(RR), then J ∈ E;

(a3) If I, J ∈ E, then I ∩ J ∈ E.

Proposition 1.2. There exists a monotone bijection between the pretorsions of

R-Mod and the preradical filters of R. It is defined by the mappings:

r  Er = {I ∈ L(RR) | r(R/I) = R/I};

E r
E
, r

E
(M) = {m ∈ M | (0 : m) ∈ E}.

Remark. From the Proposition 1.2 follows that PT is a set, in contrast to PR which
in general case is a class.

Therefore investigating the pretorsions we can use the diverse form of their
expressions: r,Tr,Er. The other three forms of presentation of pretorsions will be
indicated in the following account.

2 Operations in the set of pretorsions PTPTPT

In the set PT of pretorsions of R-Mod can be defined the following operations:

– the meet
∧

α∈A

rα, where
( ∧
α∈A

rα

)
(M) =

⋂
α∈A

rα(M), {rα | α ∈ A} ⊆ PT;

– the join
∨

α∈A

rα, where
∨

α∈A

rα =
∧

{s ∈ PT | s ≥ rα ∀ α ∈ A};

– the product r · s, where (r · s)(M) = r
(
s(M)

)
;

– the coproduct r # s, where [(r # s)(M)]/s(M) = r
(
M/s(M)

)
.
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Remarks. 1. The product r · s of two pretorsions coincides with their meet r ∧ s,
since using the heredity of r we have:

(r · s)(M) = r (s(M)) = r(M) ∩ s(M) = (r ∧ s)(M).

So in continuation we consider the set PT (∧,∨,#) equipped by three operations,
where PT (∧,∨) is a complete lattice.

2. In [1] the operation (r : s) is defined in PR by the rule [(r : s)(M)]/r(M) =
r
(
M/s(M)

)
, so (r : s) = s # r. Our notation is more convenient and more

coordinated with the other notations.

A series of properties of the defined operations are indicated in [1, 4], etc.

Now we will show how can be expressed the operations of PT (∧,∨,#) by the
classes of modules Tr, corresponding to the pretorsions r ∈ PT. For that we remind
that P. Gabriel [5] defined the product C ·D of two closed (fermeé) classes of modules
as follows:

C · D = {M ∈ R-Mod | M/ DM ∈ C},

where DM =
∑
α∈A

{Nα ∈ L(M) | Nα ∈ D}. We will preserve this rule, changing only

the notation for hereditary pretorsion classes:

Tr # Ts = {M ∈ R-Mod | M/s(M) ∈ Tr}.

In parallels with the operations in PT, we define the following operations on the
classes of modules of the form Tr, where r ∈ PT:

– the meet :
∧

α∈A

Trα
=

⋂
α∈A

Trα
;

– the join:
∨

α∈A

Trα
=

⋂
{Ts | Ts ⊇ Trα

∀ α ∈ A};

– the coproduct : Tr # Ts = {M ∈ R-Mod | M/s(M) ∈ Tr}.

Now we indicate the concordance between the operations of PT and the operations
with the hereditary pretorsion classes of R-Mod.

Proposition 2.1. T∧
α∈A

rα
=

∧
α∈A

Trα
for every family {rα | α ∈ A} ⊆ PT.

Proof. By the definitions we have:

M ∈ T∧
α∈A

rα
⇔

( ∧
α∈A

rα

)
(M) = M ⇔

⋂
α∈A

rα(M) = M ⇔ rα(M) = M ∀α ∈ A ⇔

⇔ M ∈ Trα
∀α ∈ A ⇔ M ∈

∧
α∈A

Trα
.

Similarly from the definitions follows the

Proposition 2.2. T∨
α∈A

rα
=

∨
α∈A

Trα
. �
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Proposition 2.3. Tr# s = Tr # Ts for every pretorsions r, s ∈ PT.

Proof. By the definition of coproduct we obtain:

M ∈ Tr#s ⇔ (r # s)(M) = M ⇔ [(r # s)(M)]/s(M) = M/s(M) ⇔

⇔ r
(
M/s(M)

)
= M/s(M) ⇔ M/s(M) ∈ Tr ⇔ M ∈ Tr # Ts.

In continuation we will consider the expression of operations of PT by the cor-
responding preradical filters Er of pretorsions r ∈ PT. Denote PFPFPF the set of all
preradical filters of R and define in this set the following operations:

– the meet :
∧

α∈A

Erα
=

⋂
α∈A

Erα
;

– the join:
∨

α∈A

Erα
=

⋂
{E ∈ PFPFPF | E ⊇ Erα

∀ α ∈ A};

– the coproduct : Er # Es = {I ∈ L(RR) | ∃ H ∈ Er, I ⊆ H such that
(I : a) ∈ Es ∀ α ∈ H}.

Remark. The latter operation is defined in [4] by changing the order of terms. Our
notation is harmonized with the previous ones.

Now we show the relations between these operations and the operations of PT.

Proposition 2.4. E∧
α∈A

rα
=

∧
α∈A

Erα
for every family {rα | α ∈ A} ⊆ PT.

Proof follows from the Proposition 2.1. �

Proposition 2.5. E∨
α∈A

rα
=

∨
α∈A

Erα
.

Proof follows from the Proposition 2.2. �

Proposition 2.6. E r# s = Er # Es for every r, s ∈ PT.

Proof. (⊆) Let I ∈ E r# s. Then from the Proposition 2.3 follows:

R/I ∈ Tr#s = Tr # Ts = {M ∈ R-Mod | M/s(M) ∈ Tr}.

Therefore (R/I) / s(R/I) ∈ Tr.
Now we consider the left ideal H ⊆ R defined by the rule (H/I) = s(R/I).

Then (R/I) / (H/I) ∈ Tr, so R/H ∈ Tr, i.e. H ∈ Er. Moreover, from the definition
of H we have H/I ∈ Ts.

So we have a left ideal H ∈ Er, I ⊆ H with the condition H/I ∈ Ts (i.e.
(I : a) ∈ Es for every a ∈ H). By the definition this means that I ∈ Er # Es.

(⊇) Let I ∈ Er # Es, i.e. there exists a left ideal H ⊆ R such that I ⊆ H
and H/I ∈ Ts. Consider the left ideal H ′ ⊆ R defined by the rule H ′/I = s(R/I).
From the condition H/I ∈ Ts follows that H/I ⊆ s(R/I) = H ′/I, so H ⊆ H ′.
Since H ∈ E, now we have H ′ ∈ Er, i.e. R/H ′ ∈ Tr.
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From the other hand, by Proposition 2.3 and definitions we have:

E r# s =
{
I ∈ L(RR) | R/I ∈ Tr # s = Tr # Ts =

= {M ∈ R-Mod | M/s(M) ∈ Tr}
}

= {I ∈ L(RR) | (R/I)/ s(R/I) ∈ Tr} =

= {I ∈ L(RR) | (R/I)/ (H ′/ I) ∈ Tr} = {I ∈ L(RR) | R/H ′ ∈ Tr}.

Now from the relation R/H ′ ∈ Tr obtained above follows that I ∈ E r#s.

3 Pretorsions and closure operators in L(RR)L(RR)L(RR)

In this section we will indicate a new form of expression for pretorsions of R-Mod
by some closure operators of the lattice L(RR) of left ideals of R. With this
intention we consider a mapping t : L(RR) → L(RR) and the following conditions
on t:

1◦) t(I) ⊇ I (extension);

2◦) t
(
t(I)

)
= t(I) (idempotency);

3◦) I ⊆ J ⇒ t(I) ⊆ t(J) (monotony);

4◦) t(I : a) =
(
t(I) : a

)
∀ a ∈ R (modularity);

5◦) t(I ∩ J) = t(I) ∩ t(J) (linearity).

It is well known that the conditions 1◦) – 3◦) define the ordinary notion of closure

operator of the lattice L(RR).

Definition 3.1. If the mapping t satisfies the conditions 1◦) – 4◦), then it is
called the modular closure operator of L(RR) [3, 6]. If t satisfies the conditions
1◦), 3◦), 4◦), 5◦), then it will be called the modular preclosure operator of L(RR).

There exists a monotone bijection between the torsions of R-Mod and the
modular closure operators of L(RR) [3, 6]. This bijection is obtained as follows:

r  tr, tr(I) = {a ∈ R | (I : a) ∈ Er};

t rt, rt(M) = {m ∈ M | t(0 : m) = R}.

Now we will show the generalization of this result for the case of pretorsions [7].

Proposition 3.1. Let r ∈ PT and Er be the associated preradical filter. Define

the operator tr of L(RR) by the rule:

tr(I) = {a ∈ R | (I : a) ∈ Er}.

Then tr is a modular preclosure operator of L(RR).

Proof. Verify the conditions 1◦), 3◦), 4◦), 5◦) for tr.

1◦) If a ∈ I, then (I : a) = R, R ∈ Er, so a ∈ tr(I).

3◦) If I ⊆ J and a ∈ tr(I), then (I : a) ∈ Er. From the relation (I : a) ⊆ (J : a)
by (a2) it follows that (J : a) ∈ Er, so a ∈ tr(J).
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4◦) By the definitions we have:

tr(I : a) = {x ∈ R |
(
(I : a) : x

)
= (I : xa) ∈ Er};(

tr(I) : a
)

= {x ∈ R | xa ∈ tr(I)} = {x ∈ R | (I : xa) ∈ Er},

so 4◦) is true.

5◦) The expressions of 5◦) have the form:

tr(I ∩ J) = {a ∈ R |
(
(I ∩ J) : a

)
∈ Er} = {a ∈ R | (I : a) ∩ (J : a) ∈ Er};

tr(I) ∩ tr(J) = {a ∈ R | (I : a) ∈ Er} ∩ {a ∈ R | (J : a) ∈ Er} =

= {a ∈ R | (I : a) ∩ (J : a) ∈ Er},

therefore 5◦) is true.

Proposition 3.2. Let t be a modular preclosure operator of L(RR). Define the

function rt by the rule:

rt(M) = {m ∈ M | t(0 : m) = R}

for every M ∈ R-Mod. Then rt is a pretorsion of R-Mod.

Proof. It is obvious that the set rt(M) forms a submodule of M . Moreover, for
every R-morphism f : M → M ′ we have f

(
rt(M)

)
= {f(m) | t(0 : m) = R}. Since(

0 : f(m)
)
⊇ (0 : m), we obtain t

(
0 : f(m)

)
⊇ t(0 : m) = R, so t

(
0 : f(m)

)
= R, i.e.

f(m) ∈ rt(M
′). Therefore f

(
rt(M)

)
⊆ rt(M

′) and rt is a preradical of R-Mod.
Finally, for every N ∈ L(M) we have:

rt(M) ∩ N = {n ∈ N | n ∈ rt(M)} = {n ∈ N | t(0 : n) = R} = rt(N),

so rt is hereditary, i.e. rt ∈ PT.

Theorem 3.3. The mappings r  rt and t  rt define a monotone bijection

between the pretorsions of R-Mod and the modular preclosure operators of L(RR).

Proof. Taking into account the Propositions 3.1 and 3.2, it is sufficient to prove that
the indicated mappings define a bijection, i.e. r = rtr and t = trt

.
Verify the first relation:

rtr(M) = {m ∈ M | tr(0 : m) = R} = {m ∈ M | {a ∈ R | (0 : am) ∈ Er} = R} =

= {m ∈ M | (0 : am) ∈ Er ∀ a ∈ R} = {m ∈ M |
(
(0 : m) : a

)
∈ Er ∀ a ∈ R}=

= {m ∈ M | (0 : m) ∈ Er} = r(M),

so r = rtr .
On the other hand, for every modular preclosure operator t of L(RR) we have:

trt
(I) = {a ∈ R | (I : a) ∈ Ert

},

where Ert
= {I ∈ L(RR) | t(I) = R}. Now using the modularity 4◦) we obtain:

trt
(I) = {a ∈ R | t(I : a) = R} = {a ∈ R |

(
t(I) : a

)
= R} =

= {a ∈ R | a ∈ t(I)} = t(I),
therefore t = trt

.
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We remark the fact that the preradical filter of a pretorsion rt has the form
Ert

= {I ∈ L(RR) | t(I) = R}, i.e. it coincides with the set of t-dense left ideals
of R.

In continuation we show haw can be obtained from the Theorem 3.3 the similar
result for the torsions, which was formulated above. We remind that by definition
a torsion is a hereditary radical. As the pretorsions, they can be described by the
filters of left ideals of R. Supplementing the conditions (a1)− (a3) which define the
preradical filters (see Section 1), we now consider the following conditions on the set
of left ideals E ⊆ L(RR):

(a4) If Iα ∈ E, α ∈ A, then
⋂

α∈A

Iα ∈ E;

(a5) If I ⊆ J, J ∈ E and (I : j) ∈ E for every j ∈ J , then I ∈ E.

If r ∈ PT and Er satisfies the condition (a4), then r is called jansian pretorsion.
Such pretorsions will be considered in Section 7.

The set of left ideals E ⊆ L(RR) is called a radical filter (Gabriel filter, left
Gabriel topology) if it satisfies the conditions (a1), (a2) and (a5). The description
of torsions of R-Mod by the radical filters of L(RR) consists in the following [1–5].

Proposition 3.4. The mappings

r  Er, Er = {I ∈ L(RR) | r(R/I) = R/I};

E r
E
, r

E
(M) = {m ∈ M | (0 : m) ∈ E}

define a monotone bijection between the torsions of R-Mod and radical filters

of L(RR). �

Now we will indicate the transition from the pretorsions to the torsions of R-Mod
in terms of the modular preclosure operators of L(RR).

Proposition 3.5. Let r ∈ PT and tr be the associated modular preclosure operator

of L(RR). Then the following conditions are equivalent:

1) r is a torsion;

2) tr satisfies the condition 2◦), i.e. it is idempotent.

Proof. 1) ⇒ 2) If r is a torsion with radical filter Er, then by the definitions we
have:

tr(I) = {a ∈ R | (I : a) ∈ Er};

tr
(
tr(I)

)
= {b ∈ R |

(
tr(I) : b

)
∈ Er}.

Let b ∈ tr
(
tr(I)

)
. From I ⊆ tr(I) follows (I : b) ⊆

(
tr(I) : b

)
∈ Er. Moreover,

for every d ∈
(
tr(I) : b

)
we have

(
(I : b) : d

)
∈ Er. Indeed, from d ∈

(
tr(I) : b

)

follows db ∈ tr(I), i.e. (0 : db) ∈ Er. Therefore
(
(I : b) : d

)
= (I : db) ∈ Er, so(

(I : b) : d
)
∈ Er.
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Now we can use the condition (a5) in the situation (I : b) ⊆
(
tr(I) : b

)
∈ Er,

from which follows that (I : b) ∈ Er, which means that b ∈ tr(I). So we have
tr

(
tr(I)

)
⊆ tr(I), which implies the condition 2◦).

2) ⇒ 1) Suppose that the operator tr is idempotent. By the definitions we
have:

tr(I) = {a ∈ R | (I : a) ∈ Er}, tr
(
tr(I)

)
= {b ∈ R |

(
tr(I) : b

)
∈ Er}.

Therefore the idempotence of tr means that from the
(
tr(I) : b

)
∈ Er follows

(I : b) ∈ Er.

It is sufficient to prove that the filter Er satisfies the condition (a5). Suppose
that I ⊆ J, J ∈ Er and (I : j) ∈ Er for every j ∈ J . From the last condition we
have J ⊆ tr(I) and from the J ∈ Er we obtain tr(I) ∈ Er, therefore

(
tr(I) : b

)
∈ Er

for every b ∈ R. By the idempotence of tr now follows (I : b) ∈ Er for every b ∈ R,
therefore I ∈ Er. So the condition (a5) is satisfied for Er, i.e. r is a torsion.

Applying Theorem 3.3 and Proposition 3.5, we obtain the mentioned above result
on torsions ([3, 6]).

Corollary 3.6. The mappings r  tr and t  rt define a monotone bijection

between the torsions of R-Mod and modular closure operators of L(RR). �

4 Pretorsions and closure operators of RRR-Mod

An important aspect of pretorsions of R-Mod, closely related by the previous,
consists in the description of pretorsions with the help of some closure operators of

the category R-Mod. We remind firstly the necessary definitions and facts ([8–10]).

A closure operator of R-Mod is defined as a function C, which associates to every
pair N ⊆ M , where N ∈ L(M) and M ∈ R-Mod, a submodule of M denoted by
CM (N), such that the following conditions are satisfied:

(c1) N ⊆ CM (N) (extension);

(c2) N1 ⊆ N2 ⇒ CM (N1) ⊆ CM (N2) (monotony);

(c3) f
(
CM (N)

)
⊆ CM ′

(
f(N)

)
for every R-morphism f : M → M ′ and N ⊆ M

(continuity).

We denote by CO the class of all closure operators of R-Mod. Define in this
class the following operations:

– the meet
∧

α∈A

Cα, where
( ∧
α∈A

Cα

)
M

(N) =
⋂

α∈A

[(
Cα

)
M

(N)
]
;

– the join
∨

α∈A

Cα, where
( ∨
α∈A

Cα

)
M

(N) =
∑

α∈A

[(
Cα

)
M

(N)
]
;

– the product C · D, where
(
C · D

)
M

(N) = C
M

(
D

M
(N)

)
;

– the coproduct C # D, where
(
C # D

)
M

(N) = CDm (N)(N).
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We remind also the main types of closure operators of R-Mod. An operator
C ∈ CO is called:

– weakly hereditary, if CM (N) = CCm (N)(N);

– idempotent, if CM (N) = CM

(
CM (N)

)
;

– hereditary, if CN (L) = CM (L) ∩ N , where L ⊆ N ⊆ M ;

– cohereditary, if
(
CM (N) + K

)
/K = CM/K

(
(N + K)/K

)
,

where K,N ∈ L(M);

– maximal, if CM (N)/N = CM/N ( 0̄ )
(
or: CM (N)/K = CM/K(N/K),

where K ⊆ N ⊆ M
)
;

– minimal, if CM (N) = CM (0) + N
(
or: CM (N) = CM (L) + N ,

where L ⊆ N ⊆ M
)
.

There exists a close relation between the class of preradicals PR and the class of
closure operators CO of R-Mod, which is expressed by the following mappings:

1) Φ: CO → PR, where Φ(C) = r
C

, r
C

(M) = CM (0);

2) Ψ1 : PR → CO, where Ψ1(r) = Cr, [(Cr)M (N)]/N = r(M/N);

3) Ψ2 : PR → CO, where Ψ2(r) = Cr, (Cr)M (N) = N + r(M).

The class of maximal closure operators Max (CO) coincides with the operators of
the form Cr, r ∈ PR, and the pair (Φ,Ψ1) establishes the bijection Max (CO) ∼= PR.
Dually, the class of minimal closure operators Min (CO) coincides with the class of
closure operators of the form Cr, r ∈ PR, and the pair (Φ,Ψ2) defines a bijection
Min (CO) ∼= PR.

In continuation we remind the effect of the defined above mappings to the class
PT of pretorsions of R-Mod. The following statements are proved in [9] (Part IV,
Propositions 2.7, 3.5).

Proposition 4.1. 1) The pair of mappings (Φ,Ψ1) defines a monotone bijection

between the pretorsions of R-Mod and the maximal and hereditary closure operators

of R-Mod.

2) The pair (Φ,Ψ2) determines a monotone bijection between the pretorsions of

R-Mod and the minimal and hereditary closure operators of R-Mod. �

Denoting by Max (HCO) the class of maximal and hereditary closure operators
of CO, we have the bijection PT ∼= Max (HCO).

Let r ∈ PT and Er be the associated preradical filter. Then the maximal and
hereditary closure operator Cr of R-Mod is defined by the rule [Cr

M (N)]/N =
r(M/N) and can be expressed by the filter Er as follows.
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Lemma 4.2. Cr
M (N)={m ∈ M | (N : m) ∈ Er}, where (N : m)={a ∈ R | am ∈N}.

Proof. It is obvious that the set {m ∈ M | (N : m) ∈ Er} is a submodule of M ,
containing N . Since

r(M/N) = {m + N ∈ M/N |
(
0 : (m + N)

)
= (N : m) ∈ Er},

by the definition of Cr
M (N) follows the statement.

For the subsequent investigations we need the following conditions on the closure
operator C ∈ CO:

(c4)
(
CM (N) : m

)
= CR(N : m) for every N ∈ L(M) and m ∈ M

(modularity);

(c5) CM (N ∩ L) = CM (N) ∩ CM (L) for every N,L ∈ L(M) (linearity).

Proposition 4.3. Let r ∈ PT and Cr be the respective maximal and hereditary

closure operator of R-Mod. Then Cr satisfies the conditions (c4) and (c5), i.e. it

is modular and linear.

Proof. (c4) From the definitions and Lemma 4.2 we have:
(
Cr

M (N) : m
)

= {a ∈ R | am ∈ Cr
M (N)} = {a ∈ R | (N : am) =

=
(
(N : m) : a

)
∈ Er},

Cr
R(N : m) = {a ∈ R |

(
(N : m) : a

)
= (N : am) ∈ Er},

so (c4) is true.

(c5) The expressions of (c5) have the form:

Cr
M (N ∩ L) = {m ∈ M |

(
(N ∩ L) : m

)
= (N : m) ∩ (L : m) ∈ Er},

Cr
M (N) ∩ Cr

M (L) = {m ∈ M | (N : m) ∈ Er} ∩ {m ∈ M | (L : m) ∈ Er} =

= {m ∈ M | (N : m) ∩ (L : m) ∈ Er}.

Now we mention the relation of these results with the facts of Section 3. Let
r ∈ PT with the corresponding closure operator Cr. If we consider the action of Cr

on the lattice L(RR) (i.e. we fix M = RR), then we obtain a closure operator Cr
R

of L(RR).

Corollary 4.4. If r ∈ PT, then the operator tr of L(RR) defined by the rule

tr(I) = {a ∈ R | (I : a) ∈ Er} coincides with the operator Cr
R, therefore Cr

R is a

modular preclosure operator of L(RR).

Proof. From the Lemma 4.2 we have Cr
R(I) = {a ∈ R | (I : a) ∈ Er}, therefore

Cr
R = tr. From Proposition 3.1 it now follows that Cr

R is a modular preclosure
operator of L(RR).

Now we show the similar results on the torsions of R-Mod. For that we use the
following
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Lemma 4.5. Let r ∈ PT and Cr be the associated maximal closure operator. Then

the following conditions are equivalent:

1) r is a torsion;

2) Cr is an idempotent closure operator.

Proof. 1) ⇒ 2) If r is a torsion, then Er is a radical filter, so it satisfies the
condition (a5). Let m ∈ Cr

M

(
Cr

M (N)
)
. Then

(
Cr

M(N) : m
)
∈ Er and it is obvious

that (N : m) ⊆
(
Cr

M (N) : m
)
. Moreover, for every a ∈

(
Cr

M (N) : m
)

we have
am ∈ Cr

M (N), so (N : am) =
(
(N : m) : a

)
∈ Er. Now we can apply the condition

(a5) in the situation (N : m) ⊆
(
Cr

M (N) : m
)
∈ Er, concluding that (N : m) ∈ Er,

i.e. m ∈ Cr
M (N). This proves the relation Cr

M

(
Cr

M (N)
)
⊆

(
Cr

M (N), which is
sufficient for the idempotence of Cr.

2) ⇒ 1) If Cr is idempotent, then the operator Cr
R = tr of L(RR) satisfies the

condition 2◦), i.e. it is idempotent. From the Proposition 3.5 this is equivalent to
the fact that r is a torsion.

From the Proposition 4.1 and Lemma 4.5 follows the

Corollary 4.6. The pair of mappings (Φ,Ψ1) define a monotone bijection between

the torsions of R-Mod and maximal, hereditary and idempotent closure operators of

R-Mod. �

It is interesting that the closure operators of the form Cr, where r ∈ PT (i.e.
maximal and hereditary) can be characterized by the conditions (c4) and (c5) in-
dicated above. By Proposition 4.3 every closure operator of such type satisfies the
conditions (c4) and (c5). Now we show that the inverse statement is also true.

Proposition 4.7. Let C ∈ CO and C satisfies the conditions (c4) and (c5), i.e. it is

modular and linear. Then the set of C-dense left ideals EC ={I∈L(RR) |CR(I)= R}
is a preradical filter, the pretorsion defined by EC coincides with r

C
= Φ(C) and

C = C
rc .

Proof. Verify the conditions (a1) − (a3) for EC .

(a1) If I ∈ EC and a ∈ R, then CR(I) = R and from (c4) we have

CR(I : a) =
(
CR(I) : a

)
= (R : a) = R,

therefore (I : a) ∈ EC .

(a2) If I ∈ EC and I ⊆ J , then CR(I) = R and from (c2) we have

CR(I) ⊆ CR(J), so CR(J) = R, i.e. J ∈ EC .

(a3) If I, J ∈ EC , then CR(I) = CR(J) = R, so from (c5) we obtain

CR(I ∩ J) = CR(I) ∩ CR(J) = R, i.e. I ∩ J ∈ EC .

This proves that EC is a preradical filter, therefore it defines a pretorsion r
Ec

.

It coincides with rc = Φ(C), since from the definitions and (c4) we have:
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r
Ec

(M) = {m ∈ M | (0 : m) ∈ EC} = {m ∈ M | CR(0 : m) = R} =

= {m ∈ M |
(
CM (0) : m

)
= R} = {m ∈ M | m ∈ CM (0)} = CM (0) = r

C
(M).

The similar arguments show that C r
C = C. Indeed, for every N ⊆ M using (c4)

we obtain:

(C r
C )M (N) = {m ∈ M | (N : m) ∈ EC} = {m ∈ M | CR(N : m) = R} =

= {m ∈ M |
(
CM (N) : m

)
= R} = {m ∈ M | m ∈ CM(N)} = CM (N).

From Propositions 4.3 and 4.7 follows the

Corollary 4.8. The pair of mappings (Φ,Ψ1) defines a monotone bijection between

the pretorsions of R-Mod and the modular and linear closure operators of CO. �

5 Relations between the operations of PTPTPT and COCOCO

By Proposition 4.1 the pair of mappings (Φ,Ψ1) defines a monotone bijection
PT ∼= Max (HCO). Now we specify the form of operations in Max (HCO):

– the meet :
( ∧
α∈A

Cα

)
M

(N) =
⋂

α∈A

[(
Cα

)
M

(N)
]
;

– the join:
∨

α∈A

Cα =
∧

{D ∈ Max (HCO) | D ⊇ Cα ∀ α ∈ A};

– the product : (C · D)M (N) = CM

(
DM (N)

)
.

In the case of pretorsions the relation r · s = r ∧ s was mentioned (Section 2).
Similarly, in the case of hereditary closure operators the coproduct coincides with
the meet.

Lemma 5.1. If C,D ∈ CO and C is hereditary, then C # D = C ∧ D.

Proof. For every N ⊆M from the heredity of C used in the situation N ⊆DM (N)⊆M
we obtain:

(C # D)M (N) = CDm (N)(N) = CM (N) ∩ DM (N) = (C ∧ D)M (N).

For this reason in the case of hereditary closure operators we consider only
three operations: meet, join and product, so we have the bijection: PT(∧,∨, #) ∼=
Max (HCO)(∧,∨, ·) . The following statements show the concordance of operations
in this bijection.

Proposition 5.2. C

∧
α∈A

rα

=
∧

α∈A

C rα for every family {rα | α ∈ A} ⊆ PT.

Proof. Since E∧
α∈A

rα
=

∧
α∈A

E rα
(Proposition 2.4) we have:

(
C

∧
α∈A

rα
)

M
(N) = {m ∈ M | (N : m) ∈ E∧

α∈A

rα
};

( ∧
α∈A

C rα

)
M

(N) =
⋂

α∈A

[
C rα

M (N)
]

=
⋂

α∈A

[
{m ∈ M | (N : m) ∈ Erα

}
]

=

= {m ∈ M | (N : m) ∈
∧

α∈A

E rα
= E∧

α∈A

rα
}.
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Proposition 5.3. C

∨
α∈A

rα

=
∨

α∈A

C rα for every family {rα | α ∈ A} ⊆ PT.

Proof follows from the Proposition 2.5. �

Proposition 5.4. C r # s = Cr · Cs for any pretorsions r, s ∈ PT.

Proof. We verify the relation C r # s
M (N) = Cr

M

(
Cs

M (N)
)
, where N ⊆ M .

(⊆) Let m ∈ C r # s
M (N). Then from the Proposition 2.6 and from the definitions

we have:

(N : m) ∈ E r # s = Er # Es =

= {I ∈ L(RR) | ∃ H ∈ Er, I ∈ H such that (I : a) ∈ Es ∀ a ∈ H}.

So there exists H ∈ Er such that (N : m) ⊆ H and
(
(N : m) : a

)
= (N : am) ∈ Es

for every a ∈ H. Therefore for every element am + N ∈ (Hm + N)/N we have(
0 : (am + N)

)
= (N : am) ∈ Es, which means that (Hm + N)/N ∈ Ts.

But then (Hm + N)/N ⊆ s(M/N) = C s
M (N)/N , so Hm ⊆ Cs

M (N) and
H ⊆

(
Cs

M (N) : m
)
. Since H ∈ Er, now we have

(
C s

M (N) : m
)
∈ Er, which means

that m ∈ C r
M

(
C s

M (N)
)
.

(⊇) Let m ∈ C r
M

(
C s

M (N)
)
. Then

(
C s

M (N) : m
)
∈ Er and denoting H =(

C s
M (N) : m

)
we have H ∈ Er and Hm ⊆ C s

M (N). From the relation N ⊆ C s
M (N)

follows (N : m) ⊆
(
C s

M (N) : m
)

= H. Moreover, for every a ∈ H we have
am ∈ C s

M (N), i.e. (N : am) =
(
(N : m) : a

)
∈ Es. By the definition this means

that (N : m) ∈ Er # Es = E r # s, therefore m ∈ C r # s
M (N).

From the previous statements we conclude that the mapping Ψ1 preserves the
meets and joins, but it converts the coproduct into the product.

6 Characterization of pretorsions by dense submodules

Let C ∈ CO. For every M ∈ R-Mod we denote:

FFFC
1 (M) = {N ∈ L(M) | CM (N) = M} – the set of C-dense submodules of M ;

FFFC
2 (M) = {N ∈ L(M) | CM (N) = N} – the set of C-closed submodules of M .

Thus the operator C ∈ CO defines two functions FFFC
1 and FFFC

2 , which distinguish
in every module M the set of C-dense submodules FFFC

1 (M) and the set of C-closed
submodules FFFC

2 (M). In some cases by the help of these functions the operator C
can be reestablished. More exactly, C can be restored by FFFC

1 if and only if it
is weakly hereditary. Dually, C can be reestablished by FFFC

2 if and only if it is
idempotent ([9], Part I).
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Now we remind some results on the function FFFC
1 defined by C-dense submodules.

For every C ∈ CO the function FFFC
1 satisfies the following conditions:

1) If N ∈ FFFC
1 (Mα), Mα ⊆ M, α ∈ A, then N ∈ FFFC

1

( ∑
α∈A

Mα

)
;

2) If N ⊆ P ⊆ M and N ∈ FFFC
1 (P ), then N + K ∈ FFFC

1 (P + K) for every
K ⊆ M ;

3) If f : M →M ′ is an R-morphism and N ∈ FFFC
1 (M), then f(N) ∈ FFFC

1

(
f(M)

)
.

An abstract function FFF which separates in every module M a set of submodules
FFF(M) is called a function of type FFF1, if it satisfies the conditions 1) − 3). Then FFF

defines a closure operator CFFF by the rule:

(CFFF)M (N) =
∑

α∈A

{Mα ⊆ M | N ∈ FFF(Mα)}.

The description of the weakly hereditary closure operators by the functions of type
FFF1 consists in the following ([9], Part I, Theorem 2.6).

Proposition 6.1. The mappings C  FFFC
1 and FFF  CFFF define a monotone bijec-

tion between the weakly hereditary closure operators of CO and the functions of

type FFF1 of R-Mod.

By the restriction of this bijection we obtain the similar result for the hereditary

closure operators of CO. For that the following condition on the abstract function
FFF is considered:

(Her) If N ⊆ P ⊆ M and N ∈ FFF(M), then N ∈ FFF(P ).

Proposition 6.2. The mappings C  FFFC
1 and FFF  CFFF define a mono-

tone bijection between the hereditary closure operators of CO and the abstract

functions of type FFF1 of R-Mod, which satisfy the condition (Her) ([9], Part II, Corol-

lary 2.3).

In a similar way from the Proposition 6.1 the description of weakly hereditary and

maximal closure operators can be obtained. With this aim the following condition
on a function FFF is considered:

(Max) If K ⊆ N ⊆ M and N/K ∈ FFF(M/K), then N ∈ FFF(M).

Proposition 6.3. The mappings C  FFFC
1 and FFF  CFFF define a monotone bijec-

tion between the weakly hereditary and maximal closure operators of CO and

the abstract functions of type FFF1, which satisfy the condition (Max) ([9], Part II,
Corollary 3.3).

From Propositions 6.2 and 6.3 we have

Corollary 6.4. The mappings C  FFFC
1 and FFF  CFFF establish a monotone bi-

jection between the hereditary and maximal closure operators of CO and the

abstract functions of type FFF1, which satisfy the conditions (Her) and (Max).
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Now we can use the fact that the pretorsions of R-Mod are described by the
maximal and hereditary closure operators of R-Mod, since by Proposition 4.1 we
have the bijection: PT ∼= Max(HCO). In one’s turn the operators of Max(HCO)
by Corollary 6.4 can be characterized by the abstract functions of type FFF1 with the
conditions (Max) and (Her). Therefore the followihg is true.

Proposition 6.5. There exists a monotone bijection between the pretorsions of

R-Mod and the abstract functions of type FFF1, which satisfy the conditions (Max)
and (Her).

This bijection has the form:

r  FFF r
1 , where FFF r

1 (M) = {N ∈ L(M) | (N : m) ∈ Er ∀ m ∈ M};

FFF rFFF, where rFFF(M) =
∑

{Mα ∈ L(M) | 0 ∈ FFF(Mα)}.

We mention also the fact that for every pretorsion r ∈ PT we have FFF r
1 (RR) = Er.

From the exposed above results follows that every pretorsion r ∈ PT can be
described not only by the class Tr and the filter E r, but also by the operator tr
of L(RR), by the operator Cr of R-Mod and by the function FFF r

1 , which selects the
dense submodules.

7 On some approximations of pretorsions

Concluding this work, we mention some simple methods of approximations of
pretorsions by jansian pretorsions and by torsions of R-Mod. By approximations
we means the constructions of the least jansian pretorsion or of the least torsion,
which contains the given pretorsion.

Let r ∈ PT. We denote Lr = ∩ {Iα ∈ L(RR) | Iα ∈ Er}. Then Lr is an ideal
of R and it is called the kernel of r. The following conditions for r ∈ PT are
equivalent ([1, 3, 4]):

1) r is jansian
(
see condition (a4), Section 3

)
;

2) L ∈ Er;

3) the class Tr is closed under products: if Mα ∈ Tr (α ∈ A), then
∏

α∈A

Mα ∈ Tr.

If r is a jansian pretorsion, then Er = {I ∈ L(RR) | I ⊇ Lr}.

There exists an antimonotone bijection between the jansian pretorsions of R-Mod
and two sided ideals of R. It is defined by the rules:

r  Lr, I  EI = {Iα ∈ L(RR) | Iα ⊇ I}.

It is obvious that if the pretorsion r ∈ PT is jansian, then the associated maximal and
hereditary closure operator Cr acts as follows: Cr

M (N) = {m ∈ M | (N : m) ⊇ Lr}.

It is easy to show how can be expressed by Cr the condition that the pretorsion
r ∈ PT is jansian. For that we consider the following condition to an arbitrary
C ∈ CO:
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(c6) CM

( ⋂
α∈A

Nα

)
=

⋂
α∈A

CM (Nα) for every family {Nα | α ∈ A} ⊆ L(M)

(complete linearity).

Proposition 7.1. For every r ∈ PT the following conditions are equivalent:

1) r is a jansian pretorsion;

2) the closure operator Cr satisfies the condition (c6).

Proof. 1) ⇒ 2) If r is jansian, then:

m ∈ Cr
M

( ⋂
α∈A

Nα

)
⇔

(
(
⋂

α∈A

Nα) : m
)
⊇ Lr ⇔

⋂
α∈A

(Nα : m) ⊇ Lr ⇔

⇔ m ∈
⋂

α∈A

Cr
M (Nα), so is true (c6).

2) ⇒ 1) If Cr is complete linear, then Cr
R (

⋂
Iα∈Er

Iα) =
⋂

Iα∈Er

[Cr
R(Iα)] = R,

so
⋂

Iα∈Er

Iα = Lr ∈ Er, i.e. r is jansian.

Let r ∈ PT and Lr be the kernel of the pretorsion r. Then the ideal Lr defines a
jansian pretorsion r̂, determined by the preradical filter Er̂ = {I ∈ L(RR) | I ⊇ Lr},
i.e. r̂(M) = {m ∈ M | (0 : m) ⊇ Lr} for every M ∈ R-Mod.

Proposition 7.2. r̂ is the least jansian pretorsion containing the pretorsion

r ∈ PT.

Proof. Since Er ⊆ Er̂, we have r ≤ r̂ and r̂ is a jansian pretorsion with the
kernel Lr. If s ∈ PT is jansian and r ≤ s, than Er ≤ Es, so Lr ⊇ Ls, therefore
r̂ ≤ s. This means that r̂ is the least jansian pretorsion containing r.

Taking into account this property, r̂ is called the jansian hull of the pretorsion
r ∈ PT [4]. For an ideal I of R we denote by rI the jansian pretorsion defined by
I, so that rI(M) = {m ∈ M | (0 : m) ⊇ I}.

Proposition 7.3.
∧

α∈A

r̂α = r ∑

α∈A

Lrα
for every family {rα | α ∈ A} ⊆ PT.

Proof. We compare the respective preradical filters:

E∧
α∈A

r̂α
=

⋂
α∈A

Er̂α
= {I ∈ L(RR) | I ∈ Er̂α

∀ α ∈ A} =

= {I ∈ L(RR) | I ⊇ Lrα
∀ α ∈ A} = {I ∈ L(RR) | I ⊇

∑
α∈A

Lrα
} = E r ∑

α∈A

Lrα

.

In continuation we show the other type of approximation of a pretorsion r ∈ PT,
namely by the help of torsions. Every pretorsion r ∈ PT is accompanied by two
classes of modules:

Tr = {M ∈ R-Mod | r(M) = M}, Fr = {M ∈ R-Mod | r(M) = 0}.
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It is well known that the class Tr uniquely reestablishes the pretorsion r, while the
class Fr not always determines r.

To clarify the situation it is convenient to use the following operators of
“orthogonality”, which act to the abstract classes of modules K ⊆ R-Mod ([1–3]):

K
↑

= {X ∈ R-Mod | HomR (X,Y ) = 0 ∀ Y ∈ K},

K
↓

= {Y ∈ R-Mod | HomR (X,Y ) = 0 ∀ X ∈ K}.

For every K ⊆ R-Mod the class K
↑

is a torsion class (i.e. it is closed under

homomorphic image, direct sums and extensions), and K
↓

is a torsionfree class (i.e.

it is closed under submodules, direct products and extensions). Moreover, K
↓↑

is

the least torsion class containing K, and K
↑↓

is the least torsionfree class containing

K. If r is an idempotent radical, then Tr = F
↑

r and Fr = T
↓

r . In this case Tr is
hereditary if and only if Fr is stable and this means that r is a torsion.

Lemma 7.4. If r is a pretorsion, then the class Fr = T
↓

r is closed under sub-

modules, direct products, extensions and injective envelopes, i.e. Fr is a torsionfree

stable class.

Proof. The first three properties of the class Fr = T
↓

r are obvious, since every class

of the form K
↓

is torsionfree. We verify the stability of Fr : M ∈ Fr implies
E(M) ∈ Fr, where E(M) is the injective envelope of M .

Let M ∈ Fr, i.e. r(M) = {m ∈ M | (0 : m) ∈ Er} = 0. Suppose that
r
(
E(M)

)
6= 0. Then there exists an element 0 6= x ∈ E(M) such that (0 : x) ∈ Er.

Since Rx 6= 0, we have Rx ∩ M 6= 0, so there exists an element 0 6= m = ax ∈ M ,
where a ∈ R, for which (0 : m) = (0 : ax) =

(
(0 : x) : a

)
∈ Er, therefore

0 6= m ∈ r(M), contradiction. This shows that r
(
E(M)

)
= 0, i.e. E(M) ∈ Fr and

the class Fr is stable.

Now we remind the relation between the torsions r of R-Mod and the associated
classes Tr and Fr ([1–3,6]).

Lemma 7.5. 1) The mappings r  Tr, and T  rT, where rT(M) =
∑

α∈A

{Nα ∈

L(M) | Nα ∈ T}, define a monotone bijection between the torsions of R-Mod and

the hereditary torsion classes of R-Mod.

2) The mappings r  Fr, and F  r
F
, where r

F
(M) =

⋂
α∈A

{Nα ∈ L(M) |

M/Nα ∈ F}, establish an antimonotone bijection between the torsions of R-Mod

and the stable torsionfree classes of R-Mod.

Let r ∈ PT. By the Lemma 7.4 the class Fr is a stable torsionfree class, so by
the Lemma 7.5 Fr defines a torsion r̃ such that Tr̃ = F

↑
r = T

↓↑
r and Fr̃ = Fr, i.e.

r̃(M) =
⋂

α∈A

{Nα ∈ L(M) | M/Nα ∈ Fr}.
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Proposition 7.6. Let r ∈ PT. Then the torsion r̃, defined by the class Fr, is the

least torsion containing r.

Proof. By the definitions the class of modules Tr̃ = F
↑
r = T

↓↑
r is the least hereditary

torsion class, which contains Tr. Therefore r̃ is the least torsion containing r.

The torsion r̃ constructed above is called the torsion hull of the pretorsion
r ∈ PT. Then Er̃ is the least radical filter of R, containing the preradical fil-
ter Er. It is obvious that class of modules Tr̃ can be directly described by the
class Tr, as well as the radical filter Er̃ can be expressed by Er. For example:
Er̃ = {I ∈ L(RR) | ∀ J ⊃ I, J 6= R, ∃ a /∈ J such that (J : a) ∈ Er} ([2],
Chapter VI, Proposition 5.4).

In particular, for the pretorsion Z defined by the preradical filter of essential left
ideals EZ = {I ∈ L(RR) | I ⊆′

RR}, the corresponding torsion hull is Z2 with the
radical filter (Goldie topology):

EZ2 = {I ∈ L(RR) | ∃ J ∈ EZ such that I ⊂ J and (I : b) ∈ EZ ∀ b 6= J} ([2],
Chapter VI, Proposition 6.3).
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