On spectrum of medial T_{2}-quasigroups

A. V. Scerbacova, V. A. Shcherbacov

Abstract

There exist medial T_{2}-quasigroups of any order of the form $$
2^{k_{1}} 3^{k_{2}} 5^{k_{3}} 11^{k_{4}} 17^{k_{5}} 23^{k_{6}} 53^{k_{7}} 59^{k_{8}} 83^{k_{9}} 101^{k_{10} 0} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}
$$ where $k_{1} \geq 2, k_{2}, \ldots, k_{10} \geq 1, p_{i}$ are prime numbers of the form $6 t+1, \alpha_{i} \in \mathbb{N}$, $i \in\{1, \ldots, m\}$. Some other results on T_{2}-quasigroups are given.

Mathematics subject classification: 20N05, 05B15.
Keywords and phrases: Quasigroup, medial, spectrum, T_{2}-quasigroup, parastrophe, orthogonal quasigroups.

1 Introduction

Definitions and elementary properties of quasigroups can be found in $[1,2,18]$. Most of presented here results are given in [20]. Quasigroups have some applications in cryptology [24]. The most usable in cryptology quasigroup property is the property of orthogonality of quasigroups [9].
V.D. Belousov [3, 4] (see also [10]) by the study of orthogonality of quasigroup parastrophes proved that there exist exactly seven parastrophically non-equivalent identities which guarantee that a quasigroup is orthogonal to at least one its parastrophe: s

$$
\begin{array}{ll}
x(x \cdot x y)=y & \left(C_{3}\right. \text { law) } \\
x(y \cdot y x)=y & \text { of type } T_{2}[3] \\
x \cdot x y=y x & \text { (Stein's 1st law) } \\
x y \cdot x=y \cdot x y & \text { (Stein's 2nd law) } \\
x y \cdot y x=y & \text { (Stein's 3rd law) } \\
x y \cdot y=x \cdot x y & \text { (Schroder's 1st law) } \\
y x \cdot x y=y & \text { (Schroder's 2nd law). } \tag{7}
\end{array}
$$

The names of identities (3)-(7) originate from Sade's paper [19]. We follow [6] in the name of identity (1).

All these identities can be obtained in a unified way using criteria of orthogonality and quasigroup translations [15]. For example, identity (2), which guarantees
© A. V. Scerbacova, V.A. Shcherbacov, 2016
orthogonality of a quasigroup (Q, \cdot) and its (23)-parastrophe, can be obtained from the following translation identity

$$
\begin{equation*}
L_{y}^{2} x=P_{y} x \tag{8}
\end{equation*}
$$

Using table of translations of quasigroup parastrophes [23] we can rewrite identity (8) in the following parastrophically equivalent [4] forms:

$$
\begin{align*}
& R_{y}^{2} x=P_{y}^{-1} x \\
& P_{y}^{-2} x=L_{y}^{-1} x \\
& L_{y}^{-2} x=R_{y} x \tag{9}\\
& R_{y}^{-2} x=L_{y} x \\
& P_{y}^{2} x=R_{y}^{-1} x
\end{align*}
$$

Passing to "standard" identities we obtain from the identities (9) the following identities that are parastrophically equivalent to the identity (2):

$$
\begin{align*}
& (x y \cdot y) x=y \\
& (y \backslash x)(y / x)=y, \\
& y(y \cdot x y)=x \tag{10}\\
& (y x \cdot y) y=x \\
& x(y /(x / y))=y .
\end{align*}
$$

A quasigroup (Q, \cdot) with the identity $x \cdot x=x$ is called idempotent. The set \mathfrak{Q} of natural numbers for which there exist quasigroups with a property T, for example, the property of idempotency, is called the spectrum of the property T in the class of quasigroups. Often the following phrase is used: spectrum of quasigroups with a property T. Therefore we can say that spectra of quasigroups with identities (3)-(7) were studied in $[5,6,8,12,17,25]$.

It is clear that the identity (2) and any from identities (10) have the same spectrum because order of any parastroph of a quasigroup (Q, \cdot) is equal to the order of quasigroup (Q, \cdot).

Idempotent models of the identity $(y x \cdot y) y=x$ can be associated with a class of resolvable Mendelsohn designs [5]. In [5] "it is shown that the spectrum of $(y x \cdot y) y=$ x contains all integers $n \geq 1$ with the exception of $n=2,6$ and the possible exception of $n \in\{10,14,18,26,30,38,42,158\}$. It is also shown that idempotent models of $(y x \cdot y) y=x$ exist for all orders $n>174$ ".

Here we study in the main the spectrum of medial T_{2}-quasigroups. Such quasigroups can be easy constructed and they can be used in cryptology.

2 Medial $\boldsymbol{T}_{\mathbf{2}}$-quasigroups

The problem of the study of T_{2}-quasigroups is posed in [3,4]. In [26] the following proposition (Proposition 7) is proved. We formulate this proposition in a slightly changed form.

Theorem 1. If a T_{2}-quasigroup (Q, \cdot) is isotopic to an abelian group (Q, \oplus), then for every element $b \in Q$ there exists an isomorphic copy $(Q,+) \cong(Q, \oplus)$ such that $x \cdot y=I L_{b}^{3}(x)+L_{b}(y)+b$, for all $x, y \in Q$, where $x+I x=0$ for all $x \in Q$.

Definition 1. A quasigroup (Q, \cdot) of the form $x \cdot y=\varphi x+\psi y+b$, where $(Q,+)$ is an abelian group, φ, ψ are automorphisms of the group $(Q,+), b$ is a fixed element of the set Q is called T-quasigroup. If, additionally, $\varphi \psi=\psi \varphi$, then (Q, \cdot) is called medial quasigroup $[1,2,16,18]$.

Theorem 2. A T-quasigroup (Q, \cdot) of the form

$$
\begin{equation*}
x \cdot y=\varphi x+\psi y+b \tag{11}
\end{equation*}
$$

satisfies T_{2}-identity if and only if $\varphi=I \psi^{3}, \psi^{5}+\psi^{4}+1=\left(\psi^{2}+\psi+1\right)\left(\psi^{3}-\psi+1\right)=0$, where 1 is identity automorphism of the group $(Q,+)$ and 0 is zero endomorphism of this group, $\psi^{2} b+\psi b+b=0$.

Proof. We rewrite T_{2}-identity using the right part of the form (11) as follows:

$$
\begin{equation*}
\varphi x+\psi(\varphi y+\psi(\varphi y+\psi x+b)+b)+b=y \tag{12}
\end{equation*}
$$

or, taking into consideration that $(Q,+)$ is an abelian group, φ, ψ are its automorphisms, after simplification of equality (12) we have

$$
\begin{equation*}
\varphi x+\psi \varphi y+\psi^{2} \varphi y+\psi^{3} x+\psi^{2} b+\psi b+b=y \tag{13}
\end{equation*}
$$

If we put in the equality $(13) x=y=0$, then we obtain

$$
\begin{equation*}
\psi^{2} b+\psi b+b=0 \tag{14}
\end{equation*}
$$

where 0 is the identity (neutral) element of the group $(Q,+)$.
Therefore we can rewrite equality (13) in the following form

$$
\begin{equation*}
\varphi x+\psi \varphi y+\psi^{2} \varphi y+\psi^{3} x=y \tag{15}
\end{equation*}
$$

If we put in the equality (15) $y=0$, then we obtain that $\varphi x+\psi^{3} x=0$. Therefore $\varphi=I \psi^{3}$, where, as above, $x+I x=0$ for all $x \in Q$.

Notice in any abelian group $(Q,+)$ the map I is an automorphism of this group. Really, $I(x+y)=I y+I x=I x+I y$.

Moreover, $I \alpha=\alpha I$ for any automorphism of the group $(Q,+)$. Indeed, $\alpha x+$ $I \alpha x=0$. On the other hand $\alpha x+\alpha I x=\alpha(x+I x)=\alpha 0=0$. Comparing the left sides we have $\alpha x+I \alpha x=\alpha x+\alpha I x, I \alpha x=\alpha I x, \alpha I=I \alpha$.

It is well known that $I^{2}=\varepsilon$, i.e., $-(-x)=x$. Indeed, from the equality $x+I x=0$ using commutativity we have $I x+x=0$. On the other hand $I(x+I x)=0$, $I x+I^{2} x=0$. Then $I x+x=I x+I^{2} x, x=I^{2} x$ for all $x \in Q$.

If we put in the equality (15) $x=0$, then we obtain that

$$
\begin{equation*}
\psi \varphi y+\psi^{2} \varphi y=y \tag{16}
\end{equation*}
$$

If we substitute in the equality (16) the expression $I \psi^{3}$ for φ, then we have $I \psi^{5} y+$ $I \psi^{4} y=y, \psi^{5} y+\psi^{4} y=I y, \psi^{5} y+\psi^{4} y+y=0$. The last condition can be written in the form $\psi^{5}+\psi^{4}+1=0$, where 1 is identity automorphism of the group $(Q,+)$ and 0 is zero endomorphism of this group.

It is easy to check that $\psi^{5}+\psi^{4}+1=\left(\psi^{2}+\psi+1\right)\left(\psi^{3}-\psi+1\right)$.
Converse. If we take into consideration that $\psi^{2} b+\psi b+b=0$, then from equality (13) we obtain equality (15). If we substitute in equality (15) the following equality $\varphi=I \psi^{3}$, then we obtain $\psi I \psi^{3} y+\psi^{2} I \psi^{3} y=y, \psi^{4} I y+\psi^{5} I y=y$ which is equivalent to the equality $\psi^{5} y+\psi^{4} y+y=0$. Therefore T-quasigroup (Q, \cdot) is T_{2}-quasigroup.

Remark 1. Proposition 6 in [8] states almost the same as Theorem 2.
Corollary 1. Any $T_{2}-T$-quasigroup is medial.
Proof. The proof follows from the equality $\varphi=I \psi^{3}$ (see Theorem 2).

Corollary 2. A T-quasigroup (Q, \cdot) of the form $x \cdot y=\varphi x+\psi y$ satisfies T_{2}-identity if and only if $\varphi=I \psi^{3}, \psi^{5}+\psi^{4}+1=0$.

Proof. It is easy to see.
Corollary 3. A T-quasigroup (Q, \cdot) of the form $x \cdot y=\varphi x+\psi y+b$ satisfies $T_{2}-$ identity if $\varphi=I \psi^{3}, \psi^{2}+\psi+1=0$.

Proof. The proof follows from Theorem 2 and the following fact: if $\psi^{2}+\psi+1=0$, then $\psi^{5}+\psi^{4}+1=0$. In this case the following equality $\psi^{2} b+\psi b+b=0$ is also true.

Corollary 4. A T-quasigroup (Q, \cdot) of the form $x \cdot y=\varphi x+\psi y+b$ satisfies T_{2} identity if $\varphi=I \psi^{3}, \psi^{3}-\psi+1=0, \psi^{2} b+\psi b+b=0$.

Proof. The proof follows from Theorem 2 and the following fact: if $\psi^{3}-\psi+1=0$, then $\psi^{5}+\psi^{4}+1=0$.

Lemma 1. Any T-quasigroup of the form $x \cdot y=\varphi x+\psi y+b$ is idempotent if and only if $\varphi+\psi=\varepsilon, b=0$.

Proof. It is easy to see. See also [16].

Corollary 5. Any T_{2}-T-quasigroup of the form $x \cdot y=\varphi x+\psi y+b$ is idempotent if and only if $\varphi=I \psi^{3}, \psi^{3}-\psi+1=0, b=0$.

Proof. We can use Theorem 2 and Lemma 1. Indeed, from the equality $I \psi^{3}=\varepsilon-\psi$ we have that $\psi^{3}=I+\psi, \psi^{3}-\psi+1=0$.

Example 1. The following T_{2}-quasigroup is non-medial and therefore it is not a T-quasigroup (see Corollary 1). It is clear that this quasigroup is not idempotent.

$*$	0	1	2	3	4	5	6	7	8
0	0	1	3	4	2	5	6	7	8
1	2	0	1	6	7	3	5	8	4
2	1	4	5	8	0	6	2	3	7
3	7	3	0	5	8	1	4	2	6
4	6	2	8	0	5	7	3	4	1
5	8	7	2	3	4	0	1	6	5
6	4	8	7	1	6	2	0	5	3
7	3	5	6	7	1	4	8	0	2
8	5	6	4	2	3	8	7	1	0

$3 T_{\mathbf{2}}$-quasigroups from the rings of residues

We use rings of residues modulo n, say $(R,+, \cdot, 1)$, and Theorem 2 to construct T_{2}-quasigroups. Here $(R,+)$ is cyclic group of order n, i.e., it is the group $\left(Z_{n},+\right)$ with the generator element 1 . It is clear that in many cases the element 1 is not a unique generator element, (R, \cdot) is a commutative semigroup [13].

Multiplication of an element $b \in R$ by all elements of the group $(R,+)$ induces an endomorphism of the group $(R,+)$, i.e., $b \cdot(x+y)=b \cdot x+b \cdot y$. If $g . c . d .(b, n)=1$, then the element b induces an automorphism of the group $(R,+)$ and it is called an invertible element of the $\operatorname{ring}(R,+, \cdot, 1)$.

Next theorem is a specification of Theorem 2 on medial T_{2}-quasigroups defined using rings of residues modulo n. We denote by the symbol \mathbb{Z} the set of integers, we denote by $|n|$ module of the number n.

Theorem 3. Let $\left(Z_{r},+, \cdot, 1\right)$ be a ring of residues modulo r such that $f(k)=\left(k^{5}+\right.$ $\left.k^{4}+1\right) \equiv 0(\bmod r)$ for some $k \in \mathbb{Z}$. If g.c.d. $(|k|, r)=1, k^{2} \cdot b+k \cdot b+b \equiv 0$ $(\bmod r)$ for some $b \in Z_{r}$, then there exists T_{2}-quasigroup $\left(Z_{r}, \circ\right)$ of the form $x \circ y=$ $-k^{3} \cdot x+k \cdot y+b$ and of order r.

Proof. We can use Theorem 2. The fact that g.c.d. $(|k|, r)=1$ guarantees that the multiplication by the number k induces an automorphism of the group $\left(Z_{r},+\right)$. In this case the map $-k^{3}$ is also a permutation as a product of permutations.

Example 2. Let $k=-3$. Then $f(-3)=(-3)^{5}+(-3)^{4}+1=-161=-(7) \cdot(23)$. Therefore $-161 \equiv 0(\bmod 7)$ and $-161 \equiv 0(\bmod 23)$ and we have theoretical possibility to construct T_{2} quasigroups of order 7, 23, 161 .

Case 1. Let $r=7$. Then $k=-3=4(\bmod 7)$. In this case $-\left(k^{3}\right)=-(-3)^{3}=$ $27=6(\bmod 7)$. It is clear that the elements 6 and 4 are invertible elements of the ring $\left(Z_{7},+, \cdot, 1\right)$. Therefore the quasigroup $\left(Z_{7}, *\right)$ with the form $x * y=6 \cdot x+4 \cdot y$ is T_{2}-quasigroup of order 7 .

Check. We have $6 x+4(6 y+4(6 y+4 x))=y, 70 x+24 y+96 y=y, y=y$, since $70 \equiv 0(\bmod 7), 120 \equiv 1(\bmod 7)$.

In order to construct T_{2}-quasigroups over the ring $\left(Z_{7},+, \cdot, 1\right)$ with non-zero element b we must solve congruence $(-3)^{2} \cdot b+(-3) \cdot b+b \equiv 0(\bmod 7)$. We have $7 \cdot b \equiv 0(\bmod 7)$. The last equation is true for any possible value of the element b. Therefore the following quasigroups are T_{2}-quasigroups of order $7: x \circ y=6 \cdot x+4 \cdot y+i$, for any $i \in\{1,2, \ldots, 5,6\}$.

Case 2. Let $r=23$. Then $k=-3=20(\bmod 23)$. In this case $-\left(k^{3}\right)=$ $-(-3)^{3}=27=4(\bmod 23)$. It is clear that the elements 20 and 4 are invertible elements of the ring $\left(Z_{23},+, \cdot, 1\right)$. Therefore quasigroup $\left(Z_{23}, *\right)$ with the form $x * y=$ $4 \cdot x+20 \cdot y$ is T_{2}-quasigroup of order 23.

Check. We have $4 x+20(4 y+20(4 y+20 x))=y, 4 x+80 y+1600 y+8000 x=y$, $y=y$, since $8004 \equiv 0(\bmod 23), 1680 \equiv 1(\bmod 23)$. This quasigroup is idempotent. Indeed, $4+20=24 \equiv 1 \bmod 23$.

In order to construct T_{2}-quasigroups over the ring $\left(Z_{23},+, \cdot, 1\right)$ with non-zero element b we must solve congruence $(-3)^{2} \cdot b+(-3) \cdot b+b \equiv 0(\bmod 23)$. We have $7 \cdot b \equiv 0(\bmod 23)$. This congruence modulo has unique solution $b \equiv 0 \bmod 23$, since g.c.d. $(7,23)=1$.

Case 3. Let $r=161$. Then $k=-3=158(\bmod 161)$. Recall the number 161 is not prime. In this case $-(k)^{3}=-(-3)^{3}=27(\bmod 161)$, g.c.d. $(27,161)=1$, the elements 158 and 27 are invertible elements of the ring ($Z_{161},+, \cdot, 1$). Therefore quasigroup (Z_{161}, \circ) with the form $x \circ y=27 \cdot x+158 \cdot y$ is medial T_{2}-quasigroup of order 161.

Check. $27 x+4266 y+674028 y+3944312 x=y, y=y$, since $3944339 \equiv 0$ $(\bmod 161), 678294 \equiv 1(\bmod 161)$.

In order to construct T_{2}-quasigroups over the ring $\left(Z_{7},+, \cdot, 1\right)$ with non-zero element b we must solve congruence $7 \cdot b \equiv 0(\bmod 161)$. It is clear that g.c.d. $(7,161)=7$. Therefore this congruence has 6 non-zero solutions, namely, $b \in\{23,46,69,92,115,138\}=D$.

The following quasigroups are T_{2}-quasigroups of order 161: $x \circ y=27 \cdot x+158 \cdot y+i$, for any $i \in D$.
Example 3. We list some values of the polynomial f :

$$
\begin{aligned}
& f(-20)=-3039999, f(-19)=-2345777, f(-18)=-1784591, \\
& f(-17)=-1336335, f(-16)=-983039, f(-15)=-708749, \\
& f(-14)=-499407, f(-13)=-342731, f(-12)=-228095, \\
& f(-11)=-146409, f(-10)=-89999, f(-9)=-52487, \\
& f(-8)=-28671, f(-7)=-14405, f(-6)=-6479, f(-5)=-2499, \\
& f(-4)=-767, f(-3)=-161, f(-2)=-15, f(-1)=1, f(1)=3, \\
& f(2)=49, f(3)=325, f(4)=1281, f(5)=3751, \\
& f(6)=9073, f(7)=19209, f(8)=36865, f(9)=65611, \\
& f(10)=110001, f(11)=175693, f(12)=269569, f(13)=399855,
\end{aligned}
$$

$$
\begin{aligned}
& f(14)=576241, f(15)=810001, f(12)=269569, f(17)=1503379 \\
& f(18)=1994545, f(19)=2606421, f(20)=3360001
\end{aligned}
$$

The set of prime divisors of the numbers of the set $\{f(-20), f(-19), \ldots, f(-1)$, $f(1), \ldots, f(20)\}$ contains the following primes:

$$
\begin{aligned}
& \{3,5,7,13,19,23,37,43,59,61,73,101,157,211,241,307,347, \\
& 421,503,719,833,977,991,1163,1319,2729,3359,5813,6841\} .
\end{aligned}
$$

It is possible to use presented numbers for the construction of T_{2}-quasigroups over the rings of residues.

Theorem 4. There exist medial T_{2}-quasigroups of any prime order p such that $p=6 m+1$, where $m \in \mathbb{N}$.

Proof. We use Corollary 3. Let $\left(Z_{p},+, \cdot, 1\right)$ be a ring (a Galois field) of residues modulo p, where p is prime of the form $6 t+1, t \in \mathbb{N}$. Quadratic equation $\psi^{2}+\psi+1=$ 0 has two roots $h_{1}=(-1-\sqrt{-3}) / 2$ and $h_{2}=(-1+\sqrt{-3}) / 2$. Since p is prime, then $g . c . d\left(h_{1}, p\right)=g . c . d\left(h_{2}, p\right)=1$.

It is known [11] that the number -3 is a quadratic residue modulo any prime p such that $p=6 m+1$. Finally, if the number $(-1-\sqrt{-3})$ is odd, then the number $(-1-\sqrt{-3}+p)$ is even.

We prove the fact that the number -3 is a quadratic residue modulo any prime p such that $p=6 m+1$ additionally in the following

Lemma 2. The number -3 is quadratic residue modulo of odd prime p if p can be presented in the form $6 t+1$, where $t \in \mathbb{N}$.

Proof. We use for proving this fact information from [7, p. 187-188]. We represent prime $p, p>2$, in the following form: $p=4 q t+r$, where $1 \leq r<4 q$, g.c.d. $(r, 4 q)=1$, q or $-q$ is a prime. The number q or $-q$ is a quadratic residue modulo p if and only if

$$
(-1)^{\frac{r-1}{2} \cdot \frac{q-1}{2}}\left(\frac{r}{q}\right)=1
$$

where $\left(\frac{r}{q}\right)$ is Legendre symbol, or, speaking more formally, Legendre-JacobiKronecker symbol.

If $r=1$, then $(-1)^{\frac{1-1}{2} \cdot \frac{-3-1}{2}}\left(\frac{1}{-3}\right)=\left(\frac{1}{-3}\right)=1$.
If $r=5$, then $(-1)^{\frac{5-1}{2} \cdot \frac{-3-1}{2}}\left(\frac{5}{-3}\right)=\left(\frac{5}{-3}\right)=-1$.
If $r=7$, then $(-1)^{\frac{7-1}{2} \cdot \frac{-3-1}{2}}\left(\frac{7}{-3}\right)=\left(\frac{7}{-3}\right)=1$.
If $r=11$, then $(-1)^{\frac{11-1}{2} \cdot \frac{-3-1}{2}}\left(\frac{11}{-3}\right)=\left(\frac{11}{-3}\right)=-1$.
Therefore prime p has the form $p=12 t+1$ or $p=12 t+7$. Combining the last equalities we have that $p=6 t+1$.

In order to construct T_{2}-quasigroups it is possible to use direct products of T_{2}-quasigroups. It is clear that direct product of T_{2}-quasigroups is a T_{2}-quasigroup.

It is possible to use also the following arguments. The class of T_{2} quasigroups is defined using T_{2}-identity, and it forms a variety in signature with three binary operations, namely, with the operations $\cdot, /$, and $\backslash[13]$. It is known that any variety is closed relative to the operator of direct product [13].

Therefore we can formulate the following
Theorem 5. There exist medial T_{2}-quasigroups of any order of the form $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots$ $p_{m}^{\alpha_{m}}$, where p_{i} are prime numbers of the form $6 t+1, \alpha_{i} \in \mathbb{N}, i \in\{1, \ldots, m\}$.

Notice that in this section and in the next section examples of medial quasigroups of prime order of the form $6 \cdot t+5$ (for example, $5,11,23,59$) are given.

Example 4. Using Corollary 5 and ideas of Example 2 we construct medial idempotent T_{2}-quasigroups over some cyclic groups $Z_{r}(r<174)$. Notice that such quasigroups are distributive $[1,16]$. We have:

$$
\begin{array}{ll}
x \cdot y=-2 x+3 y \bmod 5 ; & x \cdot y=-x+2 y \bmod 7 ; \\
x \cdot y=-4 x+5 y \bmod 11 ; & x \cdot y=-11 x+12 y \bmod 17 ; \\
x \cdot y=-12 x+13 y \bmod 19 ; & x \cdot y=-19 x+20 y \bmod 23 ; \\
x \cdot y=-2 x+3 y \bmod 25 ; & x \cdot y=-22 x+23 y \bmod 35 ; \\
x \cdot y=-23 x+24 y \bmod 37 ; & x \cdot y=-32 x+33 y \bmod 43 ; \\
x \cdot y=-36 x+37 y \bmod 49 ; & x \cdot y=-15 x+16 y \bmod 53 ; \\
x \cdot y=-37 x+38 y \bmod 55 ; & x \cdot y=-16 x+17 y \bmod 59 ; \\
x \cdot y=-45 x+46 y \bmod 59 ; & x \cdot y=-3 x+4 y \bmod 61 ; \\
x \cdot y=-59 x+60 y \bmod 67 ; & x \cdot y=-15 x+16 y \bmod 77 ; \\
x \cdot y=-58 x+59 y \bmod 79 ; & x \cdot y=-16 x+17 y \bmod 83 ; \\
x \cdot y=-62 x+63 y \bmod 85 ; & x \cdot y=-71 x+72 y \bmod 89 ; \\
x \cdot y=-12 x+13 y \bmod 95 ; & x \cdot y=-45 x+46 y \bmod 97 ; \\
x \cdot y=-7 x+8 y \bmod 101 ; & x \cdot y=-11 x+12 y \bmod 101 ; \\
x \cdot y=-8 x+9 y \bmod 103 ; & x \cdot y=-72 x+73 y \bmod 107 ; \\
x \cdot y=-82 x+83 y \bmod 109 ; & x \cdot y=-58 x+59 y \bmod 113 ; \\
x \cdot y=-12 x+13 y \bmod 115 ; & x \cdot y=-113 x+114 y \bmod 119 ; \\
x \cdot y=-4 x+5 y \bmod 121 ; & x \cdot y=-102 x+103 y \bmod 125 ; \\
x \cdot y=-50 x+51 y \bmod 133 ; & x \cdot y=-63 x+64 y \bmod 137 ; \\
x \cdot y=-118 x+119 y \bmod 149 ; & x \cdot y=-46 x+47 y \bmod 157 ; \\
x \cdot y=-127 x+128 y \bmod 161 ; & x \cdot y=-32 x+33 y \bmod 167 ; \\
x \cdot y=-33 x+34 y \bmod 173 ; & x \cdot y=-75 x+76 y \bmod 173 .
\end{array}
$$

Using Mace $4[14]$ we construct the following examples of medial T_{2}-quasigroups.

We recall (see Section 1) that in [5] it is proved that idempotent models of identity $(y x \cdot y) y=x$ (therefore also idempotent models of T_{2}-quasigroups) exist for all orders $n>174$.

Remark 2. From Example 4 and the example of medial idempotent T_{2}-quasigroup of order 8 we obtain partial spectrum of idempotent medial T_{2}-quasigroups of order less than 174 .
Lemma 3. There exist medial T_{2}-quasigroups of order 2^{k} for any $k \geq 2$.
Proof. It follows since T_{2}-quasigroup with the operation \boxtimes is medial quasigroup of order 2^{2} and T_{2}-quasigroup with the operation \diamond is medial quasigroup of order 2^{3} and g.c.d. $(2,3)=1$.

Example 5. There exists medial T_{2}-quasigroup of order 2^{11} since $11=2 \cdot 1+3 \cdot 3$.
Example 6. Quasigroup $\left(Z_{341}, \circ\right), x \circ y=-125 x+5 y$, is an example of medial nonidempotent T_{2}-quasigroup. Notice, in this example $5^{2}+5+1=31,5^{3}-5+1=121$, but $31 \cdot 121 \equiv 0 \bmod 341$, i.e. $5^{5}+5^{4}+1 \equiv 0 \bmod 341$.

It is possible to check that quasigroup $\left(Z_{341}, \circ\right)$ is isomorphic to the direct product of quasigroup $\left(Z_{31}, *\right)$, where $x * y=-x+5 y$, and quasigroup $\left(Z_{11}, \star\right)$, where $x \star y=-4 x+5 y$.

Quasigroup with operation $x \cdot y=13 x+18 y \bmod 35$ is isomorphic to the direct product of quasigroup of order five with the operation $x * y=-2 x+3 y \bmod 5$ and quasigroup of order seven with the operation $x \star y=-x+4 y \bmod 7$.

See $[21,22]$ about direct products of medial quasigroups.
Combining Lemma 3, Theorem 5, and constructed examples we formulate the following

Theorem 6. There exist medial T_{2}-quasigroups of any order of the form

$$
2^{k_{1}} 3^{k_{2}} 5^{k_{3}} 11^{k_{4}} 17^{k_{5}} 23^{k_{6}} 53^{k_{7}} 59^{k_{8}} 83^{k_{9}} 101^{k_{10}} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}
$$

where $k_{1} \geq 2, k_{2}, \ldots, k_{10} \geq 1, p_{i}$ are prime numbers of the form $6 t+1, \alpha_{i} \in \mathbb{N}$, $i \in\{1, \ldots, m\}$.

Notice that direct calculation demonstrates that no solution of the equations $x^{2}+x+1=0, x^{3}-x+1=0, x^{5}+x^{4}+1=0$ exists in the field $G F(29)$.

4 Annex

Computer calculations show that there exist the following medial idempotent T_{2}-quasigroups of order r of the form $r=6 t+5$. Such quasigroups of orders less than 174 are given in Example 4 and we omit them here. We give such quasigroups up to $r=1155$. We present triplets in which the permutations φ, ψ and the order r of quasigroup ($Z_{r}, \varphi, \psi, 0$) are given:

$(-97,98,185) ;$	$(-153,154,191) ;$	$(-202,203,209) ;$	$(-32,33,215) ;$
$(-33,34,227) ;$	$(-232,233,245) ;$	$(-208,209,251) ;$	$(-118,119,263) ;$
$(-202,203,275) ;$	$(-151,152,281) ;$	$(-59,60,293) ;$	$(-247,248,305) ;$
$(-170,171,317) ;$	$(-164,165,323) ;$	$(-327,328,335) ;$	$(-22,23,347) ;$
$(-312,313,359) ;$	$(-15,16,371) ;$	$(-39,40,383) ;$	$(-66,67,389) ;$
$(-137,138,395) ;$	$(-309,310,401) ;$	$(-356,357,407) ;$	$(-113,114,413) ;$
$(-55,56,419) ;$	$(-402,403,425) ;$	$(-310,311,431) ;$	$(-12,13,437) ;$
$(-249,250,449) ;$	$(-313,314,467) ;$	$(-290,291,473) ;$	$(-197,198,479) ;$
$(-142,143,485) ;$	$(-494,495,503) ;$	$(-317,318,515) ;$	$(-127,128,521) ;$
$(-477,478,539) ;$	$(-82,83,545) ;$	$(-233,234,557) ;$	$(-237,238,563) ;$
$(-109,110,569) ;$	$(-127,128,575) ;$	$(-99,100,581) ;$	$(-111,112,593) ;$
$(-71,72,599) ;$	$(-367,368,605) ;$	$(-538,539,617) ;$	$(-71,72,623) ;$
$(-504,505,629) ;$	$(-552,553,641) ;$	$(-266,267,659) ;$	$(-582,583,665) ;$
$(-125,126,671) ;$	$(-591,592,677) ;$	$(-354,355,701) ;$	$(-484,485,707) ;$
$(-117,118,719) ;$	$(-419,420,731) ;$	$(-59,60,737) ;$	$(-436,437,743) ;$
$(-393,394,749) ;$	$(-66,67,773) ;$	$(-517,518,785) ;$	$(-736,737,791) ;$
$(-225,226,797) ;$	$(-424,425,809) ;$	$(-322,323,821) ;$	$(-150,151,827) ;$
$(-232,233,833) ;$	$(-541,542,839) ;$	$(-134,135,851) ;$	$(-532,533,869) ;$
$(-477,478,875) ;$	$(-389,390,881) ;$	$(-512,513,905) ;$	$(-165,166,911) ;$
$(-147,148,935) ;$	$(-709,710,941) ;$	$(-210,211,953) ;$	$(-337,338,959) ;$
$(-706,707,971) ;$	$(-957,958,977) ;$	$(-208,209,983) ;$	$(-548,549,989) ;$
$(-542,543,995) ;$	$(-810,811,1007) ;$	$(-180,181,1019) ;$	$(-637,638,1031) ;$

$$
\begin{array}{llll}
(-674,675,1037) ; & (-267,268,1043) ; & (-82,83,1049) ; & (-427,428,1055) ; \\
(-433,434,1067) ; & (-269,270,1091) ; & (-536,537,1097) ; & (-889,890,1103) ; \\
(-761,762,1109) ; & (-382,383,1115) ; & (-753,754,1121) ; & (-134,135,1127) ; \\
(-1038,1039,1133) ; & (-997,998,1139) ; & (-872,873,1145) ; & (-561,562,1151) .
\end{array}
$$

References

[1] Belousov V.D. Foundations of the Theory of Quasigroups and Loops. Moscow, Nauka, 1967 (in Russian).
[2] Belousov V. D. Elements of Quasigroup Theory: a Special Course. Kishinev State University Printing House, Kishinev, 1981 (in Russian).
[3] Belousov V. D. Parastrophic-orthogonal quasigroups. Preprint, Kishinev, Shtiinta, 1983 (in Russian).
[4] Belousov V. D. Parastrophic-orthogonal quasigroups. Translated from the 1983 Russian original. Quasigroups Relat. Syst., 2005, 13, No. 1, 25-72.
[5] Bennett F. E. Quasigroup identities and Mendelsohn designs. Canad. J. Math., 1989, 41, No. 2, 341-368.
[6] Bennett F.E. The spectra of a variety of quasigroups and related combinatorial designs. Discrete Math., 1989, 77, 29-50.
[7] Buchstab A. A. Number Theory. Prosveshchenie, 1966 (in Russian).
[8] Ceban D., Syrbu P. On qusigroups with some minimal idetities. Studia Universitatis Moldaviae. Stiinte Exacte si Economice, 2015, 82, No. 2, 47-52.
[9] Dénes J., Keedwell A. D. Latin Squares and their Applications. Académiai Kiadó, Budapest, 1974.
[10] Evans T. Algebraic structures associated with latin squares and orthogonal arrays. Congr. Numer., 1975, 13, 31-52.
[11] Keedwell A. D., Shcherbacov V. A. Construction and properties of (r, s, t)-inverse quasigroups, I. Discrete Math., 2003, 266, No. 1-3, 275-291.
[12] Lindner C. C., Mendelsohn N. S., Sun S. R. On the construction of Schroeder quasigroups. Discrete Math., 1980, 32, No. 3, 271-280.
[13] Mal'tsev A. I. Algebraic Systems. Moscow, Nauka, 1976 (in Russian).
[14] McCune W. Mace 4. University of New Mexico, www.cs.unm.edu/mccune/prover9/, 2007.
[15] Mullen G. L., Shcherbacov V.A. On orthogonality of binary operations and squares. Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2005, No. 2(48), 3-42.
[16] Němec P., Kepka T. T-quasigroups, I. Acta Univ. Carolin. Math. Phys., 1971, 12, No. 1, 39-49.
[17] Pelling M. J., Rogers D. G. Stein quasigroups. I: Combinatorial aspects. Bull. Aust. Math. Soc., 1978, 18, 221-236.
[18] Pflugfelder H. O. Quasigroups and Loops: Introduction. Heldermann Verlag, Berlin, 1990.
[19] Sade A. Quasigroupes obéissant á certaines lois. Rev. Fac. Sci. Univ. Istambul, 1957, 22, 151-184.
[20] Scerbacova A. V., Shcherbacov V.A. About spectrum of T_{2}-quasigroups. Technical report, arXiv:1509.00796, 2015.
[21] Shcherbacov V. A. On simple n-ary medial quasigroups. In Proceedings of Conference Computational Commutative and Non-Commutative Algebraic Geometry, vol. 196 of NATO Sci. Ser. F Comput. Syst. Sci., pages 305-324. IOS Press, 2005.
[22] Shcherbacov V.A. On structure of finite n-ary medial quasigroups and automorphism groups of these quasigroups. Quasigroups Relat. Syst., 2005, 13, No. 1, 125-156.
[23] Shcherbacov V.A. On definitions of groupoids closely connected with quasigroups. Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2007, No. 2(54), 43-54.
[24] Shcherbacov V. A. Quasigroups in cryptology. Comput. Sci. J. Moldova, 2009, 17, No. 2, 193-228.
[25] Syrbu P., Ceban D. On π-quasigroups of type T_{1}. Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2014, No. 2(75), 36-43.
[26] Syrbu P. N. On π-quasigroups isotopic to abelian groups. Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2009, No. 3(61), 109-117.
A. V. Scerbacova

Received May 26, 2016
Gubkin Russian State Oil and Gas University
Leninsky Prospect, 65, Moscow 119991
Russia
E-mail: scerbik33@yandex.ru
V.A. Shcherbacov

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei str. 5, MD-2028 Chişinău
Moldova
E-mail: scerb@math.md

