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On spectrum of medial T2-quasigroups

A.V. Scerbacova, V.A. Shcherbacov

Abstract. There exist medial T2-quasigroups of any order of the form

2 k13k25k311k417k523k653k759k883k9101k10p
α1

1 p
α2

2 . . . p
αm

m ,

where k1 ≥ 2, k2, . . . , k10 ≥ 1, pi are prime numbers of the form 6t + 1, αi ∈ N,
i ∈ {1, . . . , m}. Some other results on T2-quasigroups are given.

Mathematics subject classification: 20N05, 05B15.
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phe, orthogonal quasigroups.

1 Introduction

Definitions and elementary properties of quasigroups can be found in [1, 2, 18].
Most of presented here results are given in [20]. Quasigroups have some applica-
tions in cryptology [24]. The most usable in cryptology quasigroup property is the
property of orthogonality of quasigroups [9].

V.D. Belousov [3, 4] (see also [10]) by the study of orthogonality of quasigroup
parastrophes proved that there exist exactly seven parastrophically non-equivalent
identities which guarantee that a quasigroup is orthogonal to at least one its paras-
trophe: s

x(x · xy) = y (C3 law) (1)

x(y · yx) = y of typeT2 [3] (2)

x · xy = yx (Stein’s 1st law) (3)

xy · x = y · xy (Stein’s 2nd law) (4)

xy · yx = y (Stein’s 3rd law) (5)

xy · y = x · xy (Schroder’s 1st law) (6)

yx · xy = y (Schroder’s 2nd law). (7)

The names of identities (3)–(7) originate from Sade’s paper [19]. We follow [6]
in the name of identity (1).

All these identities can be obtained in a unified way using criteria of orthogo-
nality and quasigroup translations [15]. For example, identity (2), which guarantees
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orthogonality of a quasigroup (Q, ·) and its (2 3)-parastrophe, can be obtained from
the following translation identity

L2

yx = Pyx. (8)

Using table of translations of quasigroup parastrophes [23] we can rewrite identity
(8) in the following parastrophically equivalent [4] forms:

R2

yx = P−1

y x,

P−2

y x = L−1

y x,

L−2

y x = Ryx,

R−2

y x = Lyx,

P 2

y x = R−1

y x.

(9)

Passing to ”standard” identities we obtain from the identities (9) the following iden-
tities that are parastrophically equivalent to the identity (2):

(xy · y)x = y,

(y\x)(y/x) = y,

y(y · xy) = x,

(yx · y)y = x,

x(y/(x/y)) = y.

(10)

A quasigroup (Q, ·) with the identity x ·x = x is called idempotent. The set Q of
natural numbers for which there exist quasigroups with a property T , for example,
the property of idempotency, is called the spectrum of the property T in the class
of quasigroups. Often the following phrase is used: spectrum of quasigroups with a
property T . Therefore we can say that spectra of quasigroups with identities (3)–(7)
were studied in [5, 6, 8, 12,17,25].

It is clear that the identity (2) and any from identities (10) have the same
spectrum because order of any parastroph of a quasigroup (Q, ·) is equal to the
order of quasigroup (Q, ·).

Idempotent models of the identity (yx · y)y = x can be associated with a class of
resolvable Mendelsohn designs [5]. In [5] ”it is shown that the spectrum of (yx·y)y =
x contains all integers n ≥ 1 with the exception of n = 2, 6 and the possible exception
of n ∈ {10, 14, 18, 26, 30, 38, 42, 158}. It is also shown that idempotent models of
(yx · y)y = x exist for all orders n > 174”.

Here we study in the main the spectrum of medial T2-quasigroups. Such quasi-
groups can be easy constructed and they can be used in cryptology.

2 Medial T2-quasigroups

The problem of the study of T2-quasigroups is posed in [3,4]. In [26] the following
proposition (Proposition 7) is proved. We formulate this proposition in a slightly
changed form.
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Theorem 1. If a T2-quasigroup (Q, ·) is isotopic to an abelian group (Q,⊕), then

for every element b ∈ Q there exists an isomorphic copy (Q,+) ∼= (Q,⊕) such that

x · y = IL3

b(x) + Lb(y) + b, for all x, y ∈ Q, where x+ Ix = 0 for all x ∈ Q.

Definition 1. A quasigroup (Q, ·) of the form x · y = ϕx+ ψy + b, where (Q,+) is
an abelian group, ϕ,ψ are automorphisms of the group (Q,+), b is a fixed element
of the set Q is called T -quasigroup. If, additionally, ϕψ = ψϕ, then (Q, ·) is called
medial quasigroup [1,2, 16,18].

Theorem 2. A T-quasigroup (Q, ·) of the form

x · y = ϕx+ ψy + b (11)

satisfies T2-identity if and only if ϕ = Iψ3, ψ5+ψ4+1 = (ψ2+ψ+1)(ψ3−ψ+1) = 0,
where 1 is identity automorphism of the group (Q,+) and 0 is zero endomorphism

of this group, ψ2b+ ψb+ b = 0.

Proof. We rewrite T2-identity using the right part of the form (11) as follows:

ϕx+ ψ(ϕy + ψ(ϕy + ψx+ b) + b) + b = y (12)

or, taking into consideration that (Q,+) is an abelian group, ϕ,ψ are its automor-
phisms, after simplification of equality (12) we have

ϕx+ ψϕy + ψ2ϕy + ψ3x+ ψ2b+ ψb+ b = y. (13)

If we put in the equality (13) x = y = 0, then we obtain

ψ2b+ ψb+ b = 0, (14)

where 0 is the identity (neutral) element of the group (Q,+).
Therefore we can rewrite equality (13) in the following form

ϕx+ ψϕy + ψ2ϕy + ψ3x = y. (15)

If we put in the equality (15) y = 0, then we obtain that ϕx + ψ3x = 0. Therefore
ϕ = Iψ3, where, as above, x+ Ix = 0 for all x ∈ Q.

Notice in any abelian group (Q,+) the map I is an automorphism of this group.
Really, I(x+ y) = Iy + Ix = Ix+ Iy.

Moreover, Iα = αI for any automorphism of the group (Q,+). Indeed, αx +
Iαx = 0. On the other hand αx + αIx = α(x + Ix) = α0 = 0. Comparing the left
sides we have αx+ Iαx = αx+ αIx, Iαx = αIx, αI = Iα.

It is well known that I2 = ε, i.e., −(−x) = x. Indeed, from the equality x+Ix = 0
using commutativity we have Ix + x = 0. On the other hand I(x + Ix) = 0,
Ix+ I2x = 0. Then Ix+ x = Ix+ I2x, x = I2x for all x ∈ Q.

If we put in the equality (15) x = 0, then we obtain that

ψϕy + ψ2ϕy = y. (16)
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If we substitute in the equality (16) the expression Iψ3 for ϕ, then we have Iψ5y +
Iψ4y = y, ψ5y + ψ4y = Iy, ψ5y + ψ4y + y = 0. The last condition can be written
in the form ψ5 + ψ4 + 1 = 0, where 1 is identity automorphism of the group (Q,+)
and 0 is zero endomorphism of this group.

It is easy to check that ψ5 + ψ4 + 1 = (ψ2 + ψ + 1)(ψ3 − ψ + 1).

Converse. If we take into consideration that ψ2b+ψb+b = 0, then from equality
(13) we obtain equality (15). If we substitute in equality (15) the following equality
ϕ = Iψ3, then we obtain ψIψ3y+ψ2Iψ3y = y, ψ4Iy+ψ5Iy = y which is equivalent to
the equality ψ5y+ψ4y+ y = 0. Therefore T -quasigroup (Q, ·) is T2-quasigroup.

Remark 1. Proposition 6 in [8] states almost the same as Theorem 2.

Corollary 1. Any T2-T -quasigroup is medial.

Proof. The proof follows from the equality ϕ = Iψ3 (see Theorem 2).

Corollary 2. A T-quasigroup (Q, ·) of the form x ·y = ϕx+ψy satisfies T2-identity

if and only if ϕ = Iψ3, ψ5 + ψ4 + 1 = 0.

Proof. It is easy to see.

Corollary 3. A T-quasigroup (Q, ·) of the form x · y = ϕx + ψy + b satisfies T2-

identity if ϕ = Iψ3, ψ2 + ψ + 1 = 0.

Proof. The proof follows from Theorem 2 and the following fact: if ψ2 + ψ + 1 = 0,
then ψ5 + ψ4 + 1 = 0. In this case the following equality ψ2b + ψb + b = 0 is also
true.

Corollary 4. A T-quasigroup (Q, ·) of the form x · y = ϕx + ψy + b satisfies T2-

identity if ϕ = Iψ3, ψ3 − ψ + 1 = 0, ψ2b+ ψb+ b = 0.

Proof. The proof follows from Theorem 2 and the following fact: if ψ3 − ψ + 1 = 0,
then ψ5 + ψ4 + 1 = 0.

Lemma 1. Any T-quasigroup of the form x · y = ϕx+ ψy + b is idempotent if and

only if ϕ+ ψ = ε, b = 0.

Proof. It is easy to see. See also [16].

Corollary 5. Any T2-T -quasigroup of the form x · y = ϕx + ψy + b is idempotent

if and only if ϕ = Iψ3, ψ3 − ψ + 1 = 0, b = 0.

Proof. We can use Theorem 2 and Lemma 1. Indeed, from the equality Iψ3 = ε−ψ
we have that ψ3 = I + ψ, ψ3 − ψ + 1 = 0.
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Example 1. The following T2-quasigroup is non-medial and therefore it is not a
T -quasigroup (see Corollary 1). It is clear that this quasigroup is not idempotent.

∗ 0 1 2 3 4 5 6 7 8

0 0 1 3 4 2 5 6 7 8
1 2 0 1 6 7 3 5 8 4
2 1 4 5 8 0 6 2 3 7
3 7 3 0 5 8 1 4 2 6
4 6 2 8 0 5 7 3 4 1
5 8 7 2 3 4 0 1 6 5
6 4 8 7 1 6 2 0 5 3
7 3 5 6 7 1 4 8 0 2
8 5 6 4 2 3 8 7 1 0

3 T2-quasigroups from the rings of residues

We use rings of residues modulo n, say (R,+, ·, 1), and Theorem 2 to construct
T2-quasigroups. Here (R,+) is cyclic group of order n, i.e., it is the group (Zn,+)
with the generator element 1. It is clear that in many cases the element 1 is not a
unique generator element, (R, ·) is a commutative semigroup [13].

Multiplication of an element b ∈ R by all elements of the group (R,+) induces
an endomorphism of the group (R,+), i.e., b · (x+y) = b ·x+ b ·y. If g.c.d.(b, n) = 1,
then the element b induces an automorphism of the group (R,+) and it is called an
invertible element of the ring (R,+, ·, 1).

Next theorem is a specification of Theorem 2 on medial T2-quasigroups defined
using rings of residues modulo n. We denote by the symbol Z the set of integers, we
denote by |n| module of the number n.

Theorem 3. Let (Zr,+, ·, 1) be a ring of residues modulo r such that f(k) = (k5 +
k4 + 1) ≡ 0 (mod r) for some k ∈ Z. If g.c.d.(|k|, r) = 1, k2 · b + k · b + b ≡ 0
(mod r) for some b ∈ Zr, then there exists T2-quasigroup (Zr, ◦) of the form x ◦ y =
−k3 · x+ k · y + b and of order r.

Proof. We can use Theorem 2. The fact that g.c.d.(|k|, r) = 1 guarantees that the
multiplication by the number k induces an automorphism of the group (Zr,+). In
this case the map −k3 is also a permutation as a product of permutations.

Example 2. Let k = −3. Then f(−3) = (−3)5 + (−3)4 + 1 = −161 = −(7) · (23).
Therefore −161 ≡ 0 (mod 7) and −161 ≡ 0 (mod 23) and we have theoretical
possibility to construct T2 quasigroups of order 7, 23, 161.

Case 1. Let r = 7. Then k = −3 = 4 (mod 7). In this case −(k3) = −(−3)3 =
27 = 6 (mod 7). It is clear that the elements 6 and 4 are invertible elements of the
ring (Z7,+, ·, 1). Therefore the quasigroup (Z7, ∗) with the form x ∗ y = 6 · x+ 4 · y
is T2-quasigroup of order 7.
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Check. We have 6x+ 4(6y + 4(6y + 4x)) = y, 70x+ 24y + 96y = y, y = y, since
70 ≡ 0 (mod 7), 120 ≡ 1 (mod 7).

In order to construct T2-quasigroups over the ring (Z7,+, ·, 1) with non-zero
element b we must solve congruence (−3)2 · b + (−3) · b + b ≡ 0 (mod 7). We have
7 · b ≡ 0 (mod 7). The last equation is true for any possible value of the element b.
Therefore the following quasigroups are T2-quasigroups of order 7: x◦y = 6·x+4·y+i,
for any i ∈ {1, 2, . . . , 5, 6}.

Case 2. Let r = 23. Then k = −3 = 20 (mod 23). In this case −(k3) =
−(−3)3 = 27 = 4 (mod 23). It is clear that the elements 20 and 4 are invertible
elements of the ring (Z23,+, ·, 1). Therefore quasigroup (Z23, ∗) with the form x∗y =
4 · x+ 20 · y is T2-quasigroup of order 23.

Check. We have 4x+ 20(4y + 20(4y + 20x)) = y, 4x+ 80y + 1600y + 8000x = y,
y = y, since 8004 ≡ 0 (mod 23), 1680 ≡ 1 (mod 23). This quasigroup is idempotent.
Indeed, 4 + 20 = 24 ≡ 1 mod 23.

In order to construct T2-quasigroups over the ring (Z23,+, ·, 1) with non-zero
element b we must solve congruence (−3)2 · b+ (−3) · b+ b ≡ 0 (mod 23). We have
7 ·b ≡ 0 (mod 23). This congruence modulo has unique solution b ≡ 0 mod 23, since
g.c.d.(7, 23) = 1.

Case 3. Let r = 161. Then k = −3 = 158 (mod 161). Recall the number 161
is not prime. In this case −(k)3 = −(−3)3 = 27 (mod 161), g.c.d.(27, 161) = 1,
the elements 158 and 27 are invertible elements of the ring (Z161,+, ·, 1). Therefore
quasigroup (Z161, ◦) with the form x ◦ y = 27 · x+ 158 · y is medial T2-quasigroup of
order 161.

Check. 27x + 4266y + 674028y + 3944312x = y, y = y, since 3944339 ≡ 0
(mod 161), 678294 ≡ 1 (mod 161).

In order to construct T2-quasigroups over the ring (Z7,+, ·, 1) with non-zero
element b we must solve congruence 7 · b ≡ 0 (mod 161). It is clear that
g.c.d.(7, 161) = 7. Therefore this congruence has 6 non-zero solutions, namely,
b ∈ {23, 46, 69, 92, 115, 138} = D.

The following quasigroups are T2-quasigroups of order 161: x◦y = 27·x+158·y+i,
for any i ∈ D.

Example 3. We list some values of the polynomial f :

f(−20) = −3039999, f(−19) = −2345777, f(−18) = −1784591,

f(−17) = −1336335, f(−16) = −983039, f(−15) = −708749,

f(−14) = −499407, f(−13) = −342731, f(−12) = −228095,

f(−11) = −146409, f(−10) = −89999, f(−9) = −52487,

f(−8) = −28671, f(−7) = −14405, f(−6) = −6479, f(−5) = −2499,

f(−4) = −767, f(−3) = −161, f(−2) = −15, f(−1) = 1, f(1) = 3,

f(2) = 49, f(3) = 325, f(4) = 1281, f(5) = 3751,

f(6) = 9073, f(7) = 19209, f(8) = 36865, f(9) = 65611,

f(10) = 110001, f(11) = 175693, f(12) = 269569, f(13) = 399855,
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f(14) = 576241, f(15) = 810001, f(12) = 269569, f(17) = 1503379,

f(18) = 1994545, f(19) = 2606421, f(20) = 3360001.

The set of prime divisors of the numbers of the set {f(−20), f(−19), . . . , f(−1),
f(1), . . . , f(20)} contains the following primes:

{3, 5, 7, 13, 19, 23, 37, 43, 59, 61, 73, 101, 157, 211, 241, 307, 347,

421, 503, 719, 833, 977, 991, 1163, 1319, 2729, 3359, 5813, 6841}.

It is possible to use presented numbers for the construction of T2-quasigroups over
the rings of residues.

Theorem 4. There exist medial T2-quasigroups of any prime order p such that

p = 6m+ 1, where m ∈ N.

Proof. We use Corollary 3. Let (Zp,+, ·, 1) be a ring (a Galois field) of residues
modulo p, where p is prime of the form 6t+1, t ∈ N. Quadratic equation ψ2+ψ+1 =
0 has two roots h1 = (−1−

√
−3)/2 and h2 = (−1+

√
−3)/2. Since p is prime, then

g.c.d(h1, p) = g.c.d(h2, p) = 1.

It is known [11] that the number −3 is a quadratic residue modulo any prime p
such that p = 6m+ 1. Finally, if the number (−1 −

√
−3) is odd, then the number

(−1 −
√
−3 + p) is even.

We prove the fact that the number −3 is a quadratic residue modulo any prime
p such that p = 6m+ 1 additionally in the following

Lemma 2. The number −3 is quadratic residue modulo of odd prime p if p can be

presented in the form 6t+ 1, where t ∈ N.

Proof. We use for proving this fact information from [7, p. 187-188]. We represent
prime p, p > 2, in the following form: p = 4qt+r, where 1 ≤ r < 4q, g.c.d.(r, 4q) = 1,
q or −q is a prime. The number q or −q is a quadratic residue modulo p if and only
if

(−1)
r−1
2

·

q−1
2

(

r

q

)

= 1,

where
(

r
q

)

is Legendre symbol, or, speaking more formally, Legendre-Jacobi-

Kronecker symbol.

If r = 1, then (−1)
1−1
2

·

−3−1
2

(

1

−3

)

=
(

1

−3

)

= 1.

If r = 5, then (−1)
5−1
2

·

−3−1
2

(

5

−3

)

=
(

5

−3

)

= −1.

If r = 7, then (−1)
7−1
2

·

−3−1
2

(

7

−3

)

=
(

7

−3

)

= 1.

If r = 11, then (−1)
11−1

2
·

−3−1
2

(

11

−3

)

=
(

11

−3

)

= −1.

Therefore prime p has the form p = 12t + 1 or p = 12t+ 7. Combining the last
equalities we have that p = 6t+ 1.
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In order to construct T2-quasigroups it is possible to use direct products of
T2-quasigroups. It is clear that direct product of T2-quasigroups is a T2-quasigroup.

It is possible to use also the following arguments. The class of T2 quasigroups
is defined using T2-identity, and it forms a variety in signature with three binary
operations, namely, with the operations ·, /, and \ [13]. It is known that any variety
is closed relative to the operator of direct product [13].

Therefore we can formulate the following

Theorem 5. There exist medial T2-quasigroups of any order of the form pα1
1
pα2
2
. . .

pαm
m , where pi are prime numbers of the form 6t+ 1, αi ∈ N, i ∈ {1, . . . ,m}.

Notice that in this section and in the next section examples of medial quasigroups
of prime order of the form 6 · t+ 5 (for example, 5, 11, 23, 59) are given.

Example 4. Using Corollary 5 and ideas of Example 2 we construct medial idem-
potent T2-quasigroups over some cyclic groups Zr (r < 174). Notice that such
quasigroups are distributive [1, 16]. We have:

x · y = −2x+ 3y mod 5; x · y = −x+ 2y mod 7;

x · y = −4x+ 5y mod 11; x · y = −11x+ 12y mod 17;

x · y = −12x+ 13y mod 19; x · y = −19x+ 20y mod 23;

x · y = −2x+ 3y mod 25; x · y = −22x+ 23y mod 35;

x · y = −23x+ 24y mod 37; x · y = −32x+ 33y mod 43;

x · y = −36x+ 37y mod 49; x · y = −15x+ 16y mod 53;

x · y = −37x+ 38y mod 55; x · y = −16x+ 17y mod 59;

x · y = −45x+ 46y mod 59; x · y = −3x+ 4y mod 61;

x · y = −59x+ 60y mod 67; x · y = −15x+ 16y mod 77;

x · y = −58x+ 59y mod 79; x · y = −16x+ 17y mod 83;

x · y = −62x+ 63y mod 85; x · y = −71x+ 72y mod 89;

x · y = −12x+ 13y mod 95; x · y = −45x+ 46y mod 97;

x · y = −7x+ 8y mod 101; x · y = −11x+ 12y mod 101;

x · y = −8x+ 9y mod 103; x · y = −72x+ 73y mod 107;

x · y = −82x+ 83y mod 109; x · y = −58x+ 59y mod 113;

x · y = −12x+ 13y mod 115; x · y = −113x+ 114y mod 119;

x · y = −4x+ 5y mod 121; x · y = −102x+ 103y mod 125;

x · y = −50x+ 51y mod 133; x · y = −63x+ 64y mod 137;

x · y = −118x+ 119y mod 149; x · y = −46x+ 47y mod 157;

x · y = −127x+ 128y mod 161; x · y = −32x+ 33y mod 167;

x · y = −33x+ 34y mod 173; x · y = −75x+ 76y mod 173.
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Using Mace 4 [14] we construct the following examples of medial T2-quasigroups.

∗ 0 1 2

0 0 1 2
1 2 0 1
2 1 2 0

⊠ 0 1 2 3

0 0 2 3 1
1 1 3 2 0
2 2 0 1 3
3 3 1 0 2

◦ 0 1 2 3 4

0 0 2 4 1 3
1 2 1 3 4 0
2 4 3 2 0 1
3 1 4 0 3 2
4 3 0 1 2 4

⋄ 0 1 2 3 4 5 6 7

0 0 2 4 1 6 3 7 5
1 6 1 5 2 0 7 3 4
2 7 4 2 5 3 6 0 1
3 4 7 0 3 5 1 2 6
4 5 3 6 7 4 2 1 0
5 2 0 7 6 1 5 4 3
6 3 5 1 4 7 0 6 2
7 1 6 3 0 2 4 5 7

We recall (see Section 1) that in [5] it is proved that idempotent models of
identity (yx · y)y = x (therefore also idempotent models of T2-quasigroups) exist for
all orders n > 174.

Remark 2. From Example 4 and the example of medial idempotent T2-quasigroup
of order 8 we obtain partial spectrum of idempotent medial T2-quasigroups of order
less than 174.

Lemma 3. There exist medial T2-quasigroups of order 2 k for any k ≥ 2.

Proof. It follows since T2-quasigroup with the operation ⊠ is medial quasigroup of
order 22 and T2-quasigroup with the operation ⋄ is medial quasigroup of order 23

and g.c.d.(2, 3) = 1.

Example 5. There exists medial T2-quasigroup of order 211 since 11 = 2 · 1 + 3 · 3.

Example 6. Quasigroup (Z341, ◦), x◦y = −125x+5y, is an example of medial non-
idempotent T2-quasigroup. Notice, in this example 52 +5+1 = 31, 53−5+1 = 121,
but 31 · 121 ≡ 0 mod 341, i.e. 55 + 54 + 1 ≡ 0 mod 341.

It is possible to check that quasigroup (Z341, ◦) is isomorphic to the direct product
of quasigroup (Z31, ∗), where x ∗ y = −x + 5y, and quasigroup (Z11, ⋆), where
x ⋆ y = −4x+ 5y.

Quasigroup with operation x · y = 13x+ 18y mod 35 is isomorphic to the direct
product of quasigroup of order five with the operation x ∗ y = −2x+ 3y mod 5 and
quasigroup of order seven with the operation x ⋆ y = −x+ 4y mod 7.

See [21,22] about direct products of medial quasigroups.

Combining Lemma 3, Theorem 5, and constructed examples we formulate the
following
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Theorem 6. There exist medial T2-quasigroups of any order of the form

2 k13k25k311k417k523k653k759k883k9101k10pα1
1
pα2
2
. . . pαm

m ,

where k1 ≥ 2, k2, . . . , k10 ≥ 1, pi are prime numbers of the form 6t + 1, αi ∈ N,

i ∈ {1, . . . ,m}.

Notice that direct calculation demonstrates that no solution of the equations
x2 + x+ 1 = 0, x3 − x+ 1 = 0, x5 + x4 + 1 = 0 exists in the field GF (29).

4 Annex

Computer calculations show that there exist the following medial idempotent
T2-quasigroups of order r of the form r = 6t + 5. Such quasigroups of orders less
than 174 are given in Example 4 and we omit them here. We give such quasigroups
up to r = 1155. We present triplets in which the permutations ϕ, ψ and the order
r of quasigroup (Zr, ϕ, ψ, 0) are given:

(−97, 98, 185); (−153, 154, 191); (−202, 203, 209); (−32, 33, 215);

(−33, 34, 227); (−232, 233, 245); (−208, 209, 251); (−118, 119, 263);

(−202, 203, 275); (−151, 152, 281); (−59, 60, 293); (−247, 248, 305);

(−170, 171, 317); (−164, 165, 323); (−327, 328, 335); (−22, 23, 347);

(−312, 313, 359); (−15, 16, 371); (−39, 40, 383); (−66, 67, 389);

(−137, 138, 395); (−309, 310, 401); (−356, 357, 407); (−113, 114, 413);

(−55, 56, 419); (−402, 403, 425); (−310, 311, 431); (−12, 13, 437);

(−249, 250, 449); (−313, 314, 467); (−290, 291, 473); (−197, 198, 479);

(−142, 143, 485); (−494, 495, 503); (−317, 318, 515); (−127, 128, 521);

(−477, 478, 539); (−82, 83, 545); (−233, 234, 557); (−237, 238, 563);

(−109, 110, 569); (−127, 128, 575); (−99, 100, 581); (−111, 112, 593);

(−71, 72, 599); (−367, 368, 605); (−538, 539, 617); (−71, 72, 623);

(−504, 505, 629); (−552, 553, 641); (−266, 267, 659); (−582, 583, 665);

(−125, 126, 671); (−591, 592, 677); (−354, 355, 701); (−484, 485, 707);

(−117, 118, 719); (−419, 420, 731); (−59, 60, 737); (−436, 437, 743);

(−393, 394, 749); (−66, 67, 773); (−517, 518, 785); (−736, 737, 791);

(−225, 226, 797); (−424, 425, 809); (−322, 323, 821); (−150, 151, 827);

(−232, 233, 833); (−541, 542, 839); (−134, 135, 851); (−532, 533, 869);

(−477, 478, 875); (−389, 390, 881); (−512, 513, 905); (−165, 166, 911);

(−147, 148, 935); (−709, 710, 941); (−210, 211, 953); (−337, 338, 959);

(−706, 707, 971); (−957, 958, 977); (−208, 209, 983); (−548, 549, 989);

(−542, 543, 995); (−810, 811, 1007); (−180, 181, 1019); (−637, 638, 1031);
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(−674, 675, 1037); (−267, 268, 1043); (−82, 83, 1049); (−427, 428, 1055);

(−433, 434, 1067); (−269, 270, 1091); (−536, 537, 1097); (−889, 890, 1103);

(−761, 762, 1109); (−382, 383, 1115); (−753, 754, 1121); (−134, 135, 1127);

(−1038, 1039, 1133); (−997, 998, 1139); (−872, 873, 1145); (−561, 562, 1151).
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