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Abstract. In the present paper invariant characteristics of geodesic, chebyshevian
and quasi-chebyshevian compositions X, X Xy, XX an in Weyl spaces Wy (n1 +
n2 +---+np = N) are found with the help of the prolonged covariant differentiation.
The characteristics of the spaces W which contain such special compositions are
found.
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1 Preliminary

1. A prolonged covariant differentiation in Wyy.

Let W (gag, T») be Weyl space with a fundamental tensor g,s and a comple-
mentary covector T. Let us accept that the fundamental tensor g,g is normed by
the law (see [1], p.152)

Jas = A°gag (1)
where A is a function of the point. It is known (see [1], p.153) that after renormal-
ization (1): the complementary covector T, transforms by the law T, =T, + OglnA,
which means T, is a normalizer; the reciprocal tensor ¢*° to Jap transforms by the
law g% = A\72¢*P. The coefficients of the connectedness I'g5 of the Weyl space Wi
have the presentation I'y ; = %g‘”’ (0n98y+089ar —Ovgap) — (Ta5g+Tﬁég —T1,9"° 9u)
(see [1], p.154).

Let N independent fields of directions ga (0,0 = 1,2,...,N) be given in Wy.

Renorm the fields of directions v by the condition [§]
gagvo‘vﬁ =1 (2)
g o
The reciprocal covectors Do are defined by the following equalities
ad _ ca c® _ sa
v v5—5ﬁ<:>g Vg = 03 (3)

The renormalization of the fundumental tensor accompanies with the following

. v _ g o
renorming 7% = A", va = \vg,.
g g
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According to (see [1], p.152) the fundamental tensor g,3 and the complementary
covector T, satisfy the equalities

Vo Jap = 2T, 9ap > Vo gaﬁ = =21, ga,@ (4)

According to [7] the pseudo-quantities A € Wy which after renormalization of
the fundamental tensor g,3 by the formula (1) transform by the law A = NeA are
called satellites of g,g with a weight {k}. Hence g*P{=2}, v*{-1} %a{l}.

The existence of the normalizer T, allows to introducg a prolonged covariant
differentiation of the satellites A {k} of the tensor g,g by the formula %U A =
V,A — kT,A [8]. According to [8,9] we have.

Vo gap =0, Vo g™ =0, V, 0 =V, 0% + T,0°, V, 05 =V, 05— T,05. (5)
(6% (6% (6%

Ozdeger obtained significant results in the understanding the geometry of Weyl and

Einstein-Weyl manifolds [11], using the prolonged covariant differentiation, intro-

duced in [8].

2. Compositions in Wyy;.

Consider in the space Wy the composition X, x Xy_,, of two base manifolds
Xm and Xy _p,, i.e. their topological product. Two positions P(X,,) and P(Xy_y,)
of these base manifolds pass through any point of the space Wy (X,, x Xn_r,) [2].
According to [2] and [3] any composition is completely defined with the field of the
affinor ag, satisfying the condition

aZal = 65, (6)
A . C mg N-mg "
ccording to [4] the projecting affinors a o , @ 4 are defined by the equalities
N—
a 5{ = %(5(@ + ag), a" 5{ = %(5(@ — ag) . For an arbitrary vector v® we have
N—
v =4+ a" Y =V VO where VO =4 ¢ 7 € P(X,,), V © =
m N—m m N—m

N-— . .. .
a” ® v? € P(XN_m). The partial projections or the full ones of an arbitrary
tensor are defined analogously.

3. Derivative equations in Wyy.
For the independent fields of directions v® (o, = 1,2,..., N) and their recipro-
ag

cal covectors 0, defined by (3), are fulfilled the following derivative equations [8,9]

o
V, vP =

«

SIS

o o
O’EIB , Vg %6 = _flzjavﬁ ) (7)

<]
where T'3 {0}. We obtain, using the integrability condition of (7), the next equality
o

V[a%g] + %[g%a] =0 [8]. Let us denote by (g) the lines, defined from the field
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of directions go‘ and by (11),12), el ) the net, defined from the independent fields

of directions v%, (¢ = 1,2,...,N). It is known that the field of directions v® is

parallelly translated along the lines (g) if and only if V,, vag” = pv®, where p is an
g ag

arbitrary function of the point. According to (5) the last equality can be written in
the form

[e]
V, v*” = po®. (8)
o g o
2 Coordinate net in Wy
Let us chose the net (111,12), e ,]1\)[) as a coordinate one. From (2) and g,gv*v” =
g Vv

cosw it follows that in the parameters of the coordinate net
oV

Gap = [ feosw,
g ob

67

arl o 1 « 1
v ({,0,0,. 0), g (o,g,o,...,o), e (0’0’0”"’}3)’ ©
1 2 N
Vo (f,0,0,...,0), v4(0,7,0,...,0), ..., v4(0,0,0,...,f),
1 2 N

Wheref:f(a)v A1}, wﬁ:wﬁ(a)vwﬁ{o}v c=12,...,N.

Lemma 1. When the net (?11, Uy ,]1\)[) is chosen as a coordinate one then there exist

8
the following relations between the coefficients Ty from the derivative equations (7)
«

and the coefficients of the connection I'y 5

[

oNNw

Br8., a#B8; Ty=T% —sn(ff... )+ NT, . (10)
12

07

=2

f
8
!

Proof. Using (3), (5) and (7) we obtain
B
Ty = 050"y + T 0" 07 + Ty6P . (11)
(6% (6% [e%

After applying (9) in (11) we establish the validity of (10). O
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3 Weyl spaces of compositions X,,; X Xp, X +++ X X5,
Let us introduce the notations:
a,B,v,6,0,v, T =1,2,...,N; i1,41,k1,51 =1,2,...,n1;
i J, kLS =n+ Lng +2,...,N;
12, J2, ko, 50 =m1+ 1,ny +2,...,n1 + ng;

g27327E27§2 = 1,2,...,711,711+TL2+1,TL1+TL2+2,...,N;

i3,J3, k3,83 =n1+na+1,n1 +ng+2,...,n1 + ng + ns;
o (12)
13,73, k3,53 =1,2,...,n1+na+n3+1,n +n2+ns+2,...,N;
ipyjpykpasp:n1+n2+"'+np—1+17
ny+ni+ng+--+np1+2,...,N;
ipsJpr kpsSp=1,2,...n1+ng 4+
Following [10] we shall consider the affinors
= vﬁiﬁla—_‘vﬁiﬂla for any m=1,2,...,p. (13)

The affinors (13) have weight {0}. According to (3) the affinors (13) satisfy (6), i.e.
they define the following compositions X, X XNy, Xpy X XN_nyy - -y Xy X XN,
Let us consider the composition X, X Xy, X---x X,, and let us denote the positions
of the manifolds Xy, , Xp,, ..., Xpn,, by P(Xyn,), P(Xp,), ..., P(Xp,), respectively.
The affinors

?Zgzivﬁlﬁla, m=1,2,...,p, (14)
with weight {0} will be called the projective affinors of the composition X, x
Ky X o0 X Xy,

From (3) and (14) follow clzg—l-gzg-l- +aa—5§, aﬁﬁ"gzﬁ”ﬁ,
: @ = 0, where m,l = 1,2,...,p, m # [. If v% is an arbitrary vector, then
W =alve+a vt +b va—Vﬁ—l—Vﬁ—l- +Vﬁ where Vﬁ—a “ e P(Xy,),

2 « b «
12{5:@31) € P(Xn,), .-, gﬁ:agv eP(an).

With the help of the projective aﬂﬁnors (14) the fundamental tensor g,3 can be
1 12 p—1p
presented in the form g,g = Gag + Gag + 4 Gag +2Gap+2 Gag +-- 42 G s,

o

m m o, om l
whereGaf;:aaaﬁggu, Gag—a(a )gg,, and m,l =1,2,...,p, m # L.
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m
The tensors G are full projections of the fundamental tensor g,g on the positions
P(X,
m
will be called positional fundamental tensors. They satisfy the equalities @ % Gop =

m M m m
a%GaozGag, a?

67

m
) and they define metrics on these positions. Following [5] the tensors G,

m

l l

Gop = a % Gao = 0, when m # [. Following [5] the tensors
ml ml

G op will be called hybridian tensors. They satisfy the equalities a g ClL 5 Gov =
m ml

m 1 m
agaggw, agagGg,,:&

D=

4 Special compositions X,; X Xy, X -+ X Xy, in W

Definition 1. The composition X, x X, x---x X, € Wy will be called geodesic
if for any m = 1,2,...,p the position P(X,, ) is parallelly translated along any line
of the manifold X,,, .

Theorem 1. The composition Xp, X Xy, X -+ X Xy, € Wi is geodesic if and only
if the coefficients from the derivative equations (7) satisfy the equalities

km
T, v?2=0, for any m=1,2,...,p. (15)

Tm Sm

Proof. According to (8) the composition X, x X, x --- x X, is geodesic if and
only if V, v*v 7 = pv® for any m = 1,2,...,p. From (7) and the last equality we
(2

tm Sm m

v T
obtain Ty v® v? = pv®. Now after contraction by vy we find Ty v = p 67
Im

7 )
im V. Sm im Sm. m

from where (15) follows. O

From (9), (10) and Theorem 1 follows the validity of the following statement:

Corollary 1. If the composition Xy, X Xp, X -+ x Xy, € Wi is geodesic then:

i) In the parameters of the coordinate net the coefficients of the derivative equa-
E’!?L
tions (7) satisfy the equalities T's,, =0 for any m=1,2,...,p;

Tm

ii) In the parameters of the coordinate net the coefficients of the connection

satisfy the equalities Flg;’jim =0 for any m=12,...,p.

If the composition X, X Xy, x---x X, € Wy is geodesic and the net (11), Uy ’}\);)

is chosen as a coordinate one, then using Corollary 1, for the components of the
tensor of the curvature Ram‘? we obtain R; j k., =0 for any m=1,2,...,p.

Definition 2. The composition X, X Xy, x -+ x X, € Wy will be called cheby-
shevian if for any m,l = 1,2,...,p and m # [, the position P(X,, ) is parallelly
translated along any line of the manifold X,,.
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Theorem 2. The composition Xy, X Xp, X -+ x Xy, € Wy is chebyshevian if and
only if the coefficients from the derivative equations (7) satisfy the equalities

Em
T, v =0, for any m,l=1,2,... ,p,m # L. (16)
im  SI

Proof. According to (8) the composition X, x X, x --- x X, is chebyshevian if
and only if V, v*v? = pov® for any m = 1,2,...,p. From (7) and the last equality

tm S| tm

we obtain (16). O
From (9), (10) and Theorem 2 follows the validity of the following statement:

Corollary 2. If the composition Xy, X Xy, X -+ X X, € Wy is chebyshevian then:
i) In the parameters of the coordinate net the coefficients of the derivative equa-

km
tions (7) satisfy the equalities T s, =0 for any m,l=1,2,...,p, m#I;
Im
i1) In the parameters of the coordinate net the coefficients of the connection
satisfy the equalities Fl;lmim =0 for any m,l=1,2,....p, m#*Il.
Theorem 3. If the composition Xy, X Xp, X -+ X Xy, € Wi is chebyshevian then

the space Wy is Riemannian and the metric tensor has in the chosen coordinate
system the presentation

Givin, = F() f (1) cos w (%) . (17)

i im 2 tm

Proof. Let the composition X, x Xy, X -+ x X, € Wy be chebyshevian. We chose
the net (111, Upeor ¥ ) as a coordinate one. Then from (4) and Corollary 2 we obtain

O Giyir = 215, Giyi,, for any m,l,r =1,2,...,p, m#1, m #r. (18)

From (18) it follows T, = grad, i.e. W, is Riemannian. Let us renormalize the
fundumental tensor g,g such that T, = 0, (see [1], p.157). Then the equalities (18)
accept the form 0;,,g;,;, = 0, from where (17) follows. O

Let now the composition X, X Xp, x --- x X, € Wy be chebyshevian and
X,,, are one-dimensional manifolds. Then the composition defines a chebyshevian
net (11),12),..., }\)7) According to Theorem 3 Wy is Riemannian. Using (17) and

changing the variables, we obtain for the metric tensor of the Riemannian space
JaB = COS w (%,5)
af

Let us consider an orthogonal composition X;,;, X Xp, x -+ x X, € Wy, which

means that at any point of the space any two directions V* € P(X,,, ) and ‘l/a €
m
P(X,,), when m,l =1,2,...,p, m # [, are orthogonal. In this case gaﬁva‘lfﬁ =0.
m

. I
Since V= @, Ve =ag v, then gaﬁXn/;aXl/’ﬁ = 0 <= gapa @

g

l
allvu =
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g,V

. !
= 0. Because v* and u® are arbitrary vector fields, then gagg “a 5
1

ml 2 p
= 0, from where it follows G5 = 0. Hence gog = Gog+Gap+- -+ Gap-

u

ga,@

l
agv
l
aldy

ga,@

Theorem 4. The orthogonal composition Xp, X Xp, X --- X X, € Wi is cheby-
shevian if and only if it is geodesic one.

Proof. Let the composition X, x Xy, x--- x X, € Wy be orthogonal. Then from
®e P(Xn,,) vo‘ € P(X,,) it follows gas v ®v? = 0 for any m, k= 1,2,...,p, m #

im tm 1k
k. After prolonged covariant dlfferentlatlon of the last equality and taking into

Jm
account (5) and (7) we find Jas. TUU vﬁ +gap T o v v? = 0. Now after contraction

ik Im Jm

by v? we obtain
Sk

gagT U"vavﬁ—kgaﬁT vou®uf =0, (19)
tm Sk Jk k ik Sk im Jm
From (19), Theorem 1 and Theorem 2 the validity of the Theorem 4 follows.

The compositions X, X X y_,, for which the positions P(X,,) and P(Xy_,,) are
quasi-parallelly translated along any line of the manifold X x_,, and X,,, respectively
are studied in [2,5,6].

Let us consider the composition X, x Xy, X+ --x X, € Wx. According to [2,5,6]
and (7) the positions P(X,,, ) will be quasi-parallelly translated along any line of
the manifold X, if and only if

o

Vo v%0° )\Zm v + T v, m#k. (20)
tm Jk im STTL Jk
The vector \;,, has the weight {—1}. O

Definition 3. The composition X, x X, x --- x X, € Wy will be called quasi-
chebyshevian if for any m,k = 1,2,...,p, m # k, the positions P(X,, ) are quasi-
parallelly translated along any line of the manifold X, .

Theorem 5. The composition X, X Xp, X -+ x X, € Wy is quasi-chebyshevian
if and only if the coefficients from the derivative equations (7) satisfy the equalities

g’”L —
To v?=\,0;", for any m,k=1,2,....p, m#k. (21)

m  Jk

Proof. According to (7) and (20) the composition X, x X, x --- x X, € Wy will

be quasi-chebyshevian if and only if 1720 v*v? = A, v% The last equalities are
im  Sm Jk Jk

equivalent to (21). O

From (9), (10) and Theorem 5 follows the validity of the following statement:
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Corollary 3. If the composition Xy, X Xy, X -+ x X, € Wy is quasi-chebyshevian

then:
i) In the parameters of the coordinate net the coefficients of the derivative equa-

S
tions (7) satisfy the equalities f = )\Zm5]m, for any m,k=1,2,...,p, m # k.
Ik im?
ii) In the parameters of the coordinate net the coefficients of the connection

satisfy the equalztzes I‘]k i = zﬁiméf-;” for any m,k=1,2....p, m#k, where
the vector v;, = f;m has the weight {0}.

Following [2] the vector ;,, will be called a vector of the quasi-parallel trans-
lation. If for any m,k = 1,2,...,p ;,, = 0, then according to Theorem 2 the
composition X, X X, x .-+ x X, € Wy will be chebyshevian.

Theorem 6. The composition Xy, X Xp, X -+ X X, € Wy is geodesic or cheby-
shevian, or quasi-chebyshevian if and only if the projecting affinors (14) satisfy for
any m,k=1,2,...,p, m #* k the equalities

]
@90y V,dh=0,
k [¢]
aqa%Vydalh=0, (22)
k ° k
a4 Ve ah—v,a%ah=0,
respectively.
Proof. Let the net (v VY ]1\17 ) be chosen as a coordinate one. In the parameters of
Lk
this coordinate net we have @ 5 = o, a b= 0% . For the components of the tensors

m_m, 2 m k_m,_ S m E_m, S m m _ k . .
agagvaaﬁ, agagvgaﬁ, agagvaaﬁ—waagaﬁi, which are diffrent

from zero, we find

e]
rg gm ]Vm Vo 7&1 im = f::]m’
6o WYV, d s =T (23)
tm Je 9 v tmJk’
kgm, & mg mg Sm Sm
aj ai Veaym —Yya G @ = Q/JJm(S .
From Corollaries 1, 2, 3 and (23) follows (22). O
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