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Semilattices of r-archimedean subdimonoids
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Abstract. We characterize dimonoids which are semilattices of r-archimedean
(`-archimedean, (t; r)-archimedean) subdimonoids.
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1 Introduction

Dimonoids were introduced by J.-L. Loday [1] for the study of properties of Leib-
niz algebras. Dialgebras, which are based on the notion of a dimonoid, have been
studied by many mathematicians (see, for example, [1-4]). It is well-known that
the notion of a dimonoid generalizes the notion of a digroup [5]. Digroups play a
prominent role in an important open problem from the theory of Leibniz algebras.
Dimonoids were studied in the papers of the author (see, for example, [6–11]). More-
over, note that algebras with two associative operations (so-called bisemigroups)
were considered earlier in some other aspects in the paper of B. M. Schein [12]. The
study of connections between dimonoids and bisemigroups was started in [11].

In this work we characterize dimonoids which are bands of subdimonoids. In
Section 2 we give necessary definitions, auxiliary results (Lemma 1 and Theorem 3)
and some properties of dimonoids (Lemma 2, Theorem 4 and Corollary 1). Putcha
[13] gave necessary and sufficient conditions under which an arbitrary semigroup
is a semilattice of r-archimedean (`-archimedean, t-archimedean) semigroups. In
Section 3 we extend Putcha’s results to the case of dimonoids (Theorem 5).

2 Preliminaries

A nonempty set D equipped with two binary associative operations ≺ and Â
satisfying the following axioms:

(x ≺ y) ≺ z = x ≺ (y Â z),

(x Â y) ≺ z = x Â (y ≺ z),

(x ≺ y) Â z = x Â (y Â z)

for all x, y, z ∈ D, is called a dimonoid. If the operations of a dimonoid coincide,
then the dimonoid becomes a semigroup.
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Different examples of dimonoids can be found in [1, 6–11].
The notion of a diband of subdimonoids was introduced in [6] and investigated

in [7]. Recall this definition.
A dimonoid (D,≺,Â) is called an idempotent dimonoid or a diband if x ≺ x =

x = x Â x for all x ∈ D. If ϕ : S → T is a homomorphism of dimonoids, then the
corresponding congruence on S will be denoted by ∆ϕ.

Let S be an arbitrary dimonoid, J be some idempotent dimonoid. Let

α : S → J : x 7→ xα

be a homomorphism. Then every class of the congruence ∆α is a subdimonoid of
the dimonoid S, and the dimonoid S itself is a union of such dimonoids Sξ, ξ ∈ J ,
that

xα = ξ ⇔ x ∈ Sξ = ∆x
α = {t ∈ S |(x; t) ∈ ∆α},

Sξ ≺ Sε ⊆ Sξ≺ ε, Sξ Â Sε ⊆ SξÂε,

ξ 6= ε ⇒ Sξ

⋂
Sε = ∅.

In this case we say that S is decomposable into a diband of subdimonoids (or S is
a diband J of subdimonoids Sξ, ξ ∈ J). If J is a band (=idempotent semigroup),
then we say that S is a band J of subdimonoids Sξ, ξ ∈ J . If J is a commutative
band, then we say that S is a semilattice J of subdimonoids Sξ, ξ ∈ J .

We denote the set of positive integers by N . Let (D,≺,Â) be a dimonoid and
a ∈ D, n ∈ N . Denote the power n of an element a with respect to the operation ≺
(respectively, Â) by an (respectively, by n a).

Lemma 1 (see [8], Lemma 2.4). Let (D,≺,Â) be an arbitrary dimonoid. For all
x ∈ D, n ∈ N

(i) xn Â x = (n + 1)x;
(ii) x ≺ nx = xn+1.

A semigroup S is called r-archimedean (respectively, `-archimedean) if for all
a, b ∈ S there exist x ∈ S1, n ∈ N such that bn = ax (respectively, bn = xa). A
semigroup S is called t-archimedean if for all a, b ∈ S there exist x, y ∈ S1, n ∈ N
such that bn = ax = ya.

Let (D,≺,Â) be a dimonoid. We denote the semigroup (D,≺) (respectively,
(D,Â)) with an identity by D1≺ (respectively, by D1Â).

Lemma 2. Let (D,≺,Â) be an arbitrary dimonoid.
(i) If (D,≺) is an r-archimedean semigroup, then (D,Â) is an r-archimedean

semigroup.
(ii) If (D,Â) is an `-archimedean semigroup, then (D,≺) is an `-archimedean

semigroup.
(iii) If (D,≺) is a t-archimedean semigroup, then (D,Â) is an r-archimedean

semigroup.
(iv) If (D,Â) is a t-archimedean semigroup, then (D,≺) is an `-archimedean

semigroup.
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Proof. (i) Let (D,≺) be an r-archimedean semigroup. Then for all a, b ∈ D there
exist x ∈ D1≺, n ∈ N such that a ≺ x = bn. Multiply both parts of the last equality
by b with respect to the operation Â:

(a ≺ x) Â b = a Â (x Â b) = bn Â b = (n + 1)b

according to the axiom of a dimonoid and Lemma 1 (i). So, (D,Â) is an
r-archimedean semigroup.

(ii) Let (D,Â) be an `-archimedean semigroup. Then for all a, b ∈ D there exist
x ∈ D1Â, n ∈ N such that x Â a = nb. Multiply both parts of the last equality by b
with respect to the operation ≺:

b ≺ (x Â a) = (b ≺ x) ≺ a = b ≺ nb = bn+1

according to the axiom of a dimonoid and Lemma 1 (ii). So, (D,≺) is an
`-archimedean semigroup.

The proofs of (iii) and (iv) are similar.

A semigroup S is called archimedean if for all a, b ∈ S there exist x, y ∈ S1,
n ∈ N such that bn = xay. A dimonoid is called archimedean if its both semigroups
are archimedean.

Let (D,≺,Â) be a dimonoid, a, b ∈ D. Introduce the following notations: a≺|b
if b ∈ D1≺ ≺ a ≺ D1≺ and aÂ|b if b ∈ D1Â Â a Â D1Â.

Theorem 3 (see [8], Theorem 4.1). A dimonoid (D,≺,Â) is a semilattice of
archimedean subdimonoids if and only if for all a, b ∈ D,

a≺|b ⇒ a2
≺|bn for some n ∈ N. (1)

Dually, the following theorem can be proved.

Theorem 4. A dimonoid (D,≺,Â) is a semilattice of archimedean subdimonoids
if and only if for all a, b ∈ D,

aÂ|b ⇒ 2aÂ|nb for some n ∈ N. (2)

From Theorem 4 we obtain

Corollary 1. Let (D,≺,Â) be a dimonoid. Then
(i) (D,≺,Â) with a medial semigroup (D,Â) is a semilattice of archimedean

subdimonoids;
(ii) (D,≺,Â) with a commutative operation Â is a semilattice of archimedean

subdimonoids;
(iii) (D,≺,Â) with an exponential semigroup (D,Â) is a semilattice of archimedean

subdimonoids;
(iv) (D,≺,Â) with a weakly exponential semigroup (D,Â) is a semilattice of

archimedean subdimonoids.

Dually to Corollary 4.1 from [8], this corollary can be proved.
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3 The main result

Observe that a commutative dimonoid was decomposed into a semilattice of
archimedean subdimonoids in [6]. In [9] a free commutative dimonoid was con-
structed and this dimonoid was decomposed into a semilattice of archimedean sub-
dimonoids. In [8] we gave necessary and sufficient conditions under which an arbi-
trary dimonoid is a semilattice of archimedean subdimonoids (see also Theorems 3
and 4).

In this section we give necessary and sufficient conditions under which an arbi-
trary dimonoid is a semilattice of r-archimedean (`-archimedean, (t; r)-archimedean)
subdimonoids.

Let (D,≺,Â) be a dimonoid and a, b ∈ D. Introduce the following notations:
a≺|rb if a ≺ x = b for some x ∈ D1≺; a≺|`b if x ≺ a = b for some x ∈ D1≺; aÂ|`b if
x Â a = b for some x ∈ D1Â; a≺|tb if a≺|rb and a≺|`b.

A dimonoid will be called r-archimedean (respectively, `-archimedean) if both its
semigroups are r-archimedean (respectively, `-archimedean). A dimonoid (D,≺,Â)
will be called (t; r)-archimedean if (D,≺) is a t-archimedean semigroup and (D,Â)
is an r-archimedean semigroup.

Theorem 5. Let (D,≺,Â) be an arbitrary dimonoid. Then
(i) (D,≺,Â) is a semilattice of r-archimedean subdimonoids if and only if for

all a, b ∈ D,

a≺|b ⇒ a≺|rbn for some n ∈ N. (3)

(ii) (D,≺,Â) is a semilattice of `-archimedean subdimonoids if and only if for
all a, b ∈ D,

aÂ|b ⇒ aÂ|`nb for some n ∈ N. (4)

(iii) (D,≺,Â) is a semilattice of (t; r)-archimedean subdimonoids if and only if
for all a, b ∈ D,

a≺|b ⇒ a≺|tbn for some n ∈ N. (5)

Proof. (i) Let the condition (3) hold. By Theorem 3 (1) from [13] the condition
(1) follows from (3). Hence according to Theorem 3 (D,≺,Â) is a semilattice Y
of archimedean subdimonoids (Di,≺,Â), i ∈ Y . From Theorem 3 (1) [13] it fol-
lows that (Di,≺), i ∈ Y, is an r-archimedean semigroup. Then by Lemma 2 (i)
(Di,Â), i ∈ Y , is an r-archimedean semigroup. Thus, (Di,≺,Â), i ∈ Y , is an
r-archimedean subdimonoid of (D,≺,Â).

The necessity follows from Theorem 3 (1) [13].
(ii) Let the condition (4) hold. By Theorem 3 (2) from [13] the condition (2)

follows from (4). Hence according to Theorem 4 (D,≺,Â) is a semilattice Y of
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archimedean subdimonoids (Di,≺,Â), i ∈ Y . From Theorem 3 (2) [13] it fol-
lows that (Di,Â), i ∈ Y, is an `-archimedean semigroup. Then by Lemma 2 (ii)
(Di,≺), i ∈ Y, is an `-archimedean semigroup. Thus, (Di,≺,Â), i ∈ Y, is an
`-archimedean subdimonoid of (D,≺,Â).

The necessity follows from Theorem 3 (2) [13].
(iii) Let the condition (5) hold. By Theorem 3 (3) from [13] the condition (1)

follows from (5). Hence according to Theorem 3 (D,≺,Â) is a semilattice Y of
archimedean subdimonoids (Di,≺,Â), i ∈ Y . From Theorem 3 (3) [13] it fol-
lows that (Di,≺), i ∈ Y , is a t-archimedean semigroup. Then by Lemma 2 (iii)
(Di,Â), i ∈ Y , is an r-archimedean semigroup. Thus, (Di,≺,Â), i ∈ Y, is a
(t; r)-archimedean subdimonoid of (D,≺,Â).

The necessity follows from Theorem 3 (3) [13].

Theorem 5 extends Theorem 3 from [13] about necessary and sufficient con-
ditions under which an arbitrary semigroup is a semilattice of r-archimedean
(`-archimedean, t-archimedean) semigroups.
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