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The Variational Approach to Nonlinear

Evolution Equations

Viorel Barbu

Abstract. In this paper, we present a few recent existence results via variational
approach for the Cauchy problem

dy

dt
(t) + A(t)y(t) ∋ f(t), y(0) = y0, t ∈ [0, T ],

where A(t) : V → V ′ is a nonlinear maximal monotone operator of subgradient type in
a dual pair (V, V ′) of reflexive Banach spaces. In this case, the above Cauchy problem
reduces to a convex optimization problem via Brezis–Ekeland device and this fact
has some relevant implications in existence theory of infinite-dimensional stochastic
differential equations.
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1 Introduction

Consider the Cauchy problem

dy

dt
(t) +A(t)y(t) ∋ f(t), t ∈ (0, T ),

y(0) = y0,

(1.1)

where y : [0, T ] → V, dy
dt

: (0, T ) → V ′, f : (0, T ) → V ′ and y0 ∈ H. Here V is a
real reflexive Banach space with the dual V ′ and H is a real Hilbert space such that
V ⊂ H ⊂ V ′ algebraically and topologically.

The scalar product on H and the duality pairing between V and V ′ are both
denoted by (·, ·) and the latter coincides with the scalar product of H on H ×H ⊂
V × V ′. Here A(t) : V → V ′, t ∈ (0, T ), is a family of maximal monotone operators
on V × V ′ of the form (see, e.g.,[4])

A(t) = ∂ϕ(t, ·) a.e. t ∈ (0, T ), (1.2)

where ϕ(t, ·) : V → R
∗

=]−∞,+∞] is a family of convex and lower-semicontinuous
functions and ∂ϕ(t, ·) : V → V ′ is the subdifferential of ϕ(t, ·) (see, e.g., [4, 5]).

By strong solution to (1.1) we mean a measurable function y : (0, T ) → V

which is H-valued continuous and V ′-absolutely continuous on [0, T ] and satisfies
a.e. equation (1.1) on (0, T ) along with the initial value condition y(0) = y0 ∈ H.
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We recall that

∂ϕ(t, y) = {z ∈ V ′; ϕ(t, y) ≤ ϕ(t, u) + (y − u, z), ∀u ∈ V }, y ∈ V, (1.3)

and the conjugate function ϕ∗(t, ·) : V ′ → R
∗

is defined by (see, e.g., [4, 5])

ϕ∗(t, z) = sup{(y, z) − ϕ(t, y); y ∈ V }, ∀z ∈ V ′. (1.4)

We recall also the duality relations (see [5])

ϕ(t, y) + ϕ∗(t, z) ≥ (y, z), ∀y ∈ V, z ∈ V ′, (1.5)

ϕ(t, y) + ϕ∗(t, z) = (y, z) iff z ∈ ∂ϕ(t, y). (1.6)

By virtue of (1.5) and (1.6), we may rewrite equation (1.1) as

dy

dt
(t) + z(t) = f(t), ϕ(t, y(t)) + ϕ∗(t, z(t)) = (y(t), z(t)), t ∈ (0, T ).

Equivalently,

ϕ(t, y(t)) + ϕ∗

(
t, f(t) −

dy

dt
(t)

)
=

(
y(t), f(t) −

dy

dt
(t)

)
,

a.e. t ∈ (0, T ).

(1.7)

In other words, any strong solution y to (1.1) can be viewed as solution to the
minimization problem

Min

{∫ T

0
(ϕ(t, y(t))+ϕ∗

(
t, f(t)−

dy

dt
(t)

)
−

(
y(t), f(t)−

dy

dt
(t)

)
dt

}
. (1.8)

The exact formulation of (1.8) will be given later on, but is easily seen that if one
takes the minimum in (1.8) on the space

Wp =

{
y ∈ Lp(0, T ;V ),

dy

dt
∈ Lp′(0, T ;V ′);

1

p
+

1

p′
= 1, 1 < p <∞

}
,

then (1.8) reduces to the convex optimization problem

Min

{∫ T

0

(
ϕ(t, y(t)) + ϕ∗(t, f(t) −

dy

dt
(t) − (y(t), f(t))

)
dt

+
1

2
(|y(T )|2 − |y0)|

2); y ∈ Wp

}
.

(1.9)

Conversely, one might expect that every solution y to problem (1.9) is a strong
solution to the Cauchy problem (1.1) and we shall see that this is indeed the case
under suitable assumptions onA(t) = ∂ϕ(t, ·). This is the fundament idea behind the
variational approach to equation (1.1), which goes back to the influential works [7,8]
of Brezis and Ekeland (see, also, Nayrolles [12]). Now this is known as Brezis &
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Ekeland principle and it was a fertile idea used later on in a variety of situations
(see [1–3, 9–11, 13, 14]). Though, in general, the equivalence of problems (1.1) and
(1.9) is still an open problem and it is not true in general, this principle leads to a
variational formulation of a large class of nonlinear Cauchy problems which, from
the point of view of mathematical physics and numerical computation, represents
a great advantage. As a matter of fact, by this device the Cauchy problem (1.1)
reduces to a convex optimization problem for which a large set of strategies which
belong to convex analysis are applicable. This approach is, in particular, useful
for the time-dependent Cauchy problems of the form (1.1) for which a complete
existence theory is known only in a few situations requiring either time-regularity
of the operator A(t) or polynomial growth conditions from V to V ′ (see [4], Section
4.4). In applications to stochastic differential equations of the form

dX +AX(t)dt = dW (t), t ∈ (0, T ),

X(0) = y0,
(1.10)

in a probability space {Ω,F ,Ft,P}, where A = ∂ϕ and W is a Wiener process on
H, we are lead to an equation of the form (1.1) by the transformation y = X −Wt

and get the random differential equation

dy

dt
+A(y +W (t)) = 0, t ∈ (0, T ),

y(0) = y0.

(1.11)

Since the function t → W (t) is not smooth, we are lead to an equation of the form
(1.1) when A(t)y ≡ A(y + W (t)) for which the standard existence theory is not
applicable but which can be reformulated in terms of (1.9). This problem, which
is discussed in details in [4, 6], represents a viable and promising approach to the
existence theory of infinite-dimensional nonlinear stochastic differential equations.

Notation and definitions

If Y is a Banach space with the norm ‖ · ‖Y , we denote by Lp(0, T ;Y ), 1 ≤
p ≤ ∞, the space of all Y -measurable functions u : (0, T ) → Y with ‖u‖Y ∈
Lp(0, T ). By C([0, T ];Y ) we denote the space of all continuous Y -valued functions on
[0, T ] and by W 1,p([0, T ];Y ) the Sobolev space

{
y ∈ Lp(0, T ;Y ); d

dt
∈ Lp(0, T );Y )

}
,

where dy
dt

is taken in the sense of vectorial distributions on (0, T ). Equivalently,
W 1,p([0, T ];Y ) is the space of absolutely continuous functions u : [0, T ] → Y which
are a.e. differentiable and d

dt
∈ Lp(0, T ;Y ). (See [4, 5].)

Everywhere in the following, O is an open and bounded subset of the Euclidean
space R

d, d ≥ 1, with smooth boundary ∂O (of class C2, for instance) and W k,p(O),
k ∈ N, 1 ≤ p ≤ ∞, are standard Sobolev spaces on O, i.e.,

W k,p(O) = {u ∈ Lp(O); Dαu ∈ Lp(O), |α| ≤ k}. (1.12)

W
k,p
0 (O) is the subset of functions in W k,p(O) which are of trace zero on ∂O.
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We set H1
0 (O) = W

1,2
0 (O).

A multivalued function (graph) β : R → 2R is said to be maximal monotone if it
is monotone, that is, (v1 − v2)(u1 + u2) ≥ 0 for vi ∈ β(ui), i = 1, 2, and the range of
u → u+ β(u) is all of R. Any maximal monotone graph β : R → 2R is of the form
β = ∂j, where j : R →] −∞,+∞] is convex and lower-semicontinuous. (This is the
potential function corresponding to β.)

2 Existence for the Cauchy problem (1.1)

2.1 The main results

We study here problem (1.1) under the following hypotheses:

(i) V is a real Banach space with the dual V ′ and H is a real Hilbert space such

that V ⊂ H ⊂ V ′ algebraically and topologically.

Denote by (·, ·) the pairing between V and V ′ and, respectively, the scalar product
on H. The norms of V, V ′ and H are denoted by ‖ · ‖V , ‖ · ‖V ′ and | · |H .

(ii) A(t)y = ∂ϕ(t, y) a.e. t ∈ (0, T ), ∀y ∈ V, where ϕ : (0, T ) × V → R is

measurable in t on (0, T ) and lower-semicontinuous on V with respect to y.

There are α1, α2 > 0, γ1, γ2 ∈ R and 1 < p1 ≤ p2 <∞ such that

γ1 + α2‖u‖
p1

V ≤ ϕ(t, u) ≤ γ2 + α2‖u‖
p2

V , ∀u ∈ V, a.e. t ∈ (0, T ). (2.1)

Instead of (ii) we consider the following alternative weaker assumption on ϕ.

(iii) A(t) = ∂ϕ(t, ·), where ϕ : (0, T )×H → R is measurable in t, convex and lower-

semicontinuous in y on H and for each M > 0 there is CM > 0 independent

of t such that

ϕ(t, u) ≤ CM a.e. t ∈ (0, T ), ‖u‖V ≤M, (2.2)

γ1 + α1‖u‖
p1

V ≤ ϕ(t, u), ∀u ∈ V, a.e. t ∈ (0, T ). (2.3)

It should be mentioned that both hypotheses (ii), (iii) imply that ϕ(t, ·) is continuous
on V for almost all t ∈ (0, T ) but no differentiability conditions so A(t) = ∂ϕ(t, ·)
might be multivalued as well.

Hypothesis (iv) below is a symmetry condition on u→ ϕ(t, u) for large ‖u‖V .

(iv) There are C1, C2 ∈ R+ such that

ϕ(t,−u) ≤ C1ϕ(t, u) +C2, ∀u ∈ V, a.e. t ∈ (0, T ). (2.4)

Theorems 2.1, 2.2 below are the main results.

Theorem 2.1. Under hypotheses (i), (ii), (iv), for each y0 ∈ V and f ∈ Lp′1(0, T ;V ′)
there is a unique strong solution to (1.1) satisfying

y ∈ Lp1(0, T ;V ) ∩ C([0, T ];H) ∩W 1,p′2([0, T ];V ′), (2.5)
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where 1
pi

+ 1
p′i

= 1, 1 < pi <∞, i = 1, 2.

Moreover, y is the solution to the minimization problem

Min
{ ∫ T

0

(
ϕ(t, u(t)) + ϕ∗

(
t, f(t) −

du

dt
(t)

)
− (u(t), f(t))

)
dt

+
1

2
|u(T )|2H ; u ∈ Lp1(0, T ;V ) ∩W 1,p′2([0, T ];V ′), u(0) = y0

}
.

(2.6)

We have also

Theorem 2.2. Under hypotheses (i), (iii), (iv) for each y0 ∈ V and f ∈ Lp′1(0, T ;V ′)
there is a unique strong solution to (1.1) such that

y∗ ∈ Lp1(0, T ;V ) ∩C([0, T ];H) ∩W 1,1([0, T ];V ). (2.7)

Moreover, y∗ is the solution to the minimization problem (2.6).

2.2 Examples to PDEs

Now, we pause briefly to see how Theorems 2.1 and 2.2 apply to a few standard
parabolic nonlinear boundary value problems.

Example 2.1. (Semilinear parabolic equations) Consider the boundary value
problem

∂y

∂t
− ∆y + β(t, y) ∋ f(t, ξ), t ∈ (0, T ), ξ ∈ O,

y(0, ξ) = y0(ξ), ξ ∈ O,

y(t, ξ) = 0, on (0, T ) × ∂O.

(2.8)

Here O ⊂ R
d, d ≥ 1, is a bounded open domain with smooth boundary ∂O and

β : (0, T ) × R → 2R is a maximal monotone graph in y for almost all t ∈ (0, T ) and
is measurable in t.

Denote by j(t, ·) : R → R the potential associated with β(t, ·) that is,

∂rj(t, r) = β(t, r), ∀r ∈ R, t ∈ (0, T ),

and assume that

γ1 + α1|r|
p1 ≤ j(t, r) ≤ γ2 + α2|r|

p2 , ∀r ∈ R,

j(t,−r) ≤ C1j(t, r) +C2, ∀r ∈ R,
(2.9)

where 1 < p1 ≤ p2 <∞ and C1, α1, α2 > 0, γ1, γ2, C2 ∈ R.

We apply Theorem 2.1, where V = H1
0 (O) ∩ Lp1(O), V ′ = H−1(O) + Lp′1(O),

where H−1(O) = (H1
0 (O))′ is the dual of H1

0 (O), and ϕ is the function

ϕ(t, u) =

∫

O

(
1

2
|∇u(ξ)|2 + j(t, u(ξ))

)
dξ, ∀u ∈ V, t ∈ (0, T ). (2.10)

Then, by Theorem 2.1, we obtain that
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Corollary 2.1. Under assumptions (2.8) for each f ∈ Lp′2(0, T ;H−1(O) +Lp′1(O))
and y0 ∈ V there is a unique solution y to (2.8) which satisfies

y ∈ Lp1(0, T ;H1
0 (O) ∩ Lp1(O)) ∩ C([0, T ];L2(O)), (2.11)

∂y

∂t
∈ Lp′2(0, T ;H−1(O) + Lp′1(O)). (2.12)

Similarly, by Theorem 2.2 we have

Corollary 2.2. Assume that, instead of (2.8), the function j satisfies the weaker

assumption j(t,−r) ≤ C1j(t, r) + C2 for all r ∈ R and

{
γ1 + α2|r|

p1 ≤ j(t, r), ∀r ∈ R, t ∈ (0, T ),

j(t, r) ≤ CM , ∀|r| ≤M, ∀M > 0, t ∈ (0, T ).
(2.13)

Then, for f ∈ Lp′1(0, T ;H−1(O) + Lp′1(O)) and y0 ∈ V , there is a unique solution y

to (2.8) satisfying (2.11) and

∂y

∂t
∈ L1(0, T ;H−1(O) + Lp′1(O)). (2.14)

The conjugate ϕ∗ to the function ϕ is given by

ϕ∗(t, v) = sup

{
(u, v) −

∫

O

(
1

2
|∇u|2 + j(t, u)

)
dξ; u ∈ H1

0 (O))

}

and, by Fenchel’s duality theorem, we have after some calculation (see [5], p. 219)

ϕ∗(t, v) = inf
u

{1

2
‖v + u‖2

H−1(O) +

∫

O
j∗(t, u)dξ

}
,

which is just the Moreau regularization of the function u →
∫
Ω j

∗(t, u)dξ in the
space H−1(O). Then, by Theorems 2.1 and 2.2 it follows that the solution y given
by Corollaries 2.1 and 2.2 are given by

y = arg min
{∫ T

0

(
ϕ(t, u) + ϕ∗

(
t, f −

du

dt

))
dt+

1

2

∫

Ω
u2(T, ξ)dξ

}
,

where ϕ,ϕ∗ are as above.

Example 2.2. (The porous media equation) Consider the equation

∂y

∂t
− ∆β(t, y) ∋ f in (0, T ) ×O,

y(0, ξ) = y0(ξ) in O,

β(t, y) = 0 on (0, T ) × ∂O,

(2.15)

where β : (0, T ) × R → 2R is measurable in t and maximal monotone in y ∈ R.
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Assume that condition (2.8) holds for

2d

d+ 2
< p1 ≤ p2 <∞ if d > 2,

1 < p1 ≤ p2 <∞ if d = 1, 2.

(2.16)

We shall apply here Theorem 2.1 for

H = H−1(O), V = Lp1(O)

and

ϕ(t, y) =





∫

O
j(t, y(ξ))dξ if y ∈ H−1(O) and j(t, y) ∈ L1(O),

+∞ otherwise.



 (2.17)

The space V ′ is, in this case, the dual of V = Lp1(O) ⊂ H−1(O) (by the Sobolev
embedding theorem we have this inclusion) with the pivot space H−1(O) endowed
with the scalar product 〈u, v〉−1 =

∫
O u(−∆)−1v dξ, where D(∆) = H1

0 (O)∩H2(O).
It is easily seen that ∆−1V ′ ⊂ Lp2(O). Then, as easily follows, ∂ϕ(t, y) = −∆∂j(t, y)
(see, e.g.,[4], p. 68), we obtain

Corollary 2.3. Under assumptions (2.16), for each y0 ∈ Lp1(O) and f ∈
Lp′1(0, T ;H−1(O)) ⊂ Lp′1(0, T ;V ′) there is a unique solution y to (2.15) such that

y ∈ Lp1((0, T ) ×O),
dy

dt
∈ Lp′2(0, T ;V ′), (2.18)

∂y

∂t
= ∆η in (0, T ) ×O; η ∈ Lp2((0, T ) ×O),

η ∈ β(y) a.e. in (0, T ) ×O.
(2.19)

Example 2.3. (Parabolic nonlinear BVP of divergence type) Consider the
equation

∂y

∂t
− div a(t,∇y) = f in (0, T ) ×O;

y = 0 on (0, T ) × ∂O.
(2.20)

Here a(t, r) = ∂j(t, r) : (0, T ) × R
d → R

d, where j(t, ·) : R
d → R is convex, conti-

nuous y ∈ R
d and measurable in t. Moreover, there are αi > 0, γi ∈ R, i = 1, 2, and

1 < p1 ≤ p2 <∞, such that

r1 + α1‖r‖
p1

Rd ≤ j(t, r) ≤ γ2 + α2‖r‖
p2

Rd , ∀r ∈ R
d,

j(t, r)

j(t,−r)
≤ C, ∀r ∈ R.

(2.21)
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One applies Theorem 2.1 for V = W
1,p1
0 (O), V ′ = W−1,p′1(O), H = L2(O) if

p1 ≥ 2 and V = W
1,p1
0 (O) ∩ L2(O) if 1 < p1 < 2.

In this case, ϕ : (0, T ) × V → R is defined by

ϕ(t, y) =





∫

O
j(t,∇y(ξ))dξ if j(t,∇y) ∈ L1(O),

+∞ otherwise.

(2.22)

We obtain

Corollary 2.4. Under assumptions (2.21) for all y0 ∈ W
1,p1
0 (O) and f ∈

Lp′1(0, T ;V ′) there is a unique solution y to (2.20)

y ∈ Lp1(0, T ;V ) ∩ C([0, T ];L2(O)), (2.23)

∂y

∂t
∈ Lp′2(0, T ;V ′). (2.24)

Remark 2.1. Multivalued functions β arise naturally if one attempts to treat
parabolic equations with discontinuous monotone nonlinearities. For instance, the
equation

∂y

∂t
− ∆y + β0(t, y) = f(t, ξ) in (0, T ) ×O,

y(0, ξ) = y0(ξ), ξ ∈ O,

y(t, ξ) = 0, (t, ξ) ∈ (0, T ) ∈ ∂O,

where r → β0(t, r) is monotonically increasing and discontinuous in r = rj, can be
put in the form (2.8), where

β(t, r) =

{
β0(t, r), r 6= rj ,

[β0(t, rj − 0), β0(t, rj + 0)], r = rj ,

and for which Corollary 2.1 is applicable.

Multivalued functions ∂ϕ(t, ·) arise also in the treatment of parabolic problems
with free boundary. For instance, the free boundary problem

∂y

∂t
− ∆y = f in {y > 0},

y ≥ 0 in (0, T ) ×O,

y(0, ξ) = y0(ξ) in O,

y = 0 on (0, T ) × ∂O,

can be written in the form (1.1), where V = H1
0 (O), H = L2(O) and

ϕ(t, y) =





1

2

∫

O
|∇y|2dξ if y ∈ K,

+∞ otherwise,

where K = {y ∈ H1
0 (O); y ≥ 0 a.e. in O}. (See, e.g., [4], p. 209.)
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Remark 2.2. Equation (2.15) is relevant in dynamics of fluid flows in porous media
as well as in that of underground water flows. In this later case, (2.15) reduces to
the Richards equation which, in presence of a transport term, is written as

∂y

∂t
− ∆β(t, y) + div K(t, y) = 0.

Remark 2.3. In the works [10,13,14] there are several examples of physical problems
which are reduced to variational problems by the above procedure, as well as in
the recent book [11] by N. Ghoussoub. In particular, in the work [13] the doubly

nonlinear equation ∂ψ
(

dy
dt

)
+ ∂ϕ(y) ∋ f, y(0) = y0 is studied via the above Brezis–

Ekeland principle.
There are some recent extensions of the Brezis–Ekeland principle to nonlinear

equations of the form

dy

dt
+Ay ∋ f, t ∈ (0, T ), y(0) = y0, (2.25)

where A is a maximal monotone operator of potential type. This representation of
the Cauchy problem (2.25) as a variational problem is via Fitzpatrick function [9].
For a presentation of this approach we refer to the work of A. Visintin [14] (See also
the monograph [11].)

3 Proofs

3.1 Proof of Theorem 2.1

Without loss of generality, we may assume that y0=0. This can be achieved by
shifting the initial data y0 to origin via the transformation y→y−y0.

For simplicity, we shall write y′ = dy
dt

·
As noticed earlier in Introduction, we have (see (1.6), (1.7))

ϕ(t, y(t)) + ϕ∗(t, f(t) − y′(t)) = (f(t) − y′(t), y(t)) a.e. t ∈ (0, T ),

while

ϕ(t, z(t)) + ϕ∗(t, f(t) − z′(t)) − (f(t) − z′(t), z(t)) ≥ 0 a.e. t ∈ (0, T ),

for all z ∈ Lp1(0, T ;V )∩W 1,p′2([0, T ];V ′). Therefore, we are lead to the optimization
problem

Min
{∫ T

0
(ϕ(t, y(t))+ϕ∗(t, f(t)−y′(t))−(f(t)−y′(t), y(t)))dt;

y ∈ Lp1(0, T ;V ) ∩W 1,p′2([0, T ];V ′), y(0) = 0
}
.

(3.26)

However, since the integral
∫ T

0 (y′(t), y(t))dt might not be well defined, taking into
account that (see, e.g., [4], p. 23)

1

2

d

dt
‖y(t)‖2

V = (y′(t), y(t)) a.e. t ∈ (0, T ),
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for each y ∈ Lp1(0, T ;V )∩W 1,p′2([0, T ];V ′), we shall replace (3.26) by the following
convex optimization problem

Min
{∫ T

0
(ϕ(t, y(t)))+ϕ∗(t, f(t)−y′(t))−(f(t), y(t))dt+

1

2
‖y(T )‖2

V ;

y ∈ Lp1(0, T ;V ) ∩W 1,p′2([0, T ];V ′), y(0) = 0, y(T ) ∈ H
}
,

(3.27)

which is well defined because, as easily follows by Hypothesis (ii), we have, by virtue
of the conjugacy formulae,

γ1 + α1‖θ‖
p′2
V ′ ≤ ϕ∗(t, θ) ≤ γ2 + α2‖θ‖

p′1
V ′ , ∀θ ∈ V ′ a.e. t ∈ (0, T ). (3.28)

We prove now that problem (3.27) has a solution y∗, which is also a solution to (1.1).
To this end, we set d∗ = inf (3.27) and choose a sequence

{yn} ⊂ Lp1(0, T ;V ) ∩W 1,p′2([0, T ];V ′)

such that yn(0) = 0 and

d∗ ≤

∫ T

0
(ϕ(t, yn(t))+ϕ∗(t, f(t)−y′n(t))−(f(t), yn(t))dt+

1

2
|yn(T )|2H

≤ d∗ +
1

n
, ∀n ∈ N.

(3.29)

By Hypothesis (ii) and by (3.28), we see that

‖yn‖Lp1 (0,T ;V ) + ‖y′n‖L
p′
2 (0,T ;V ′)

≤ C, ∀n ∈ N,

and, therefore, on a subsequence, we have

yn → y weakly in Lp1(0, T ;V ),

y′n → y′ weakly in Lp′2(0, T ;V ′),

yn(T ) → y(T ) weakly in H.

(3.30)

Inasmuch as the functions y →
∫ T

0 ϕ(t, y(t))dt, z →
∫ T

0 ϕ∗(t, f(t) − z′(t))dt and

y1 → |y1|
2
H are weakly lower-semicontinuous in Lp1(0, T ;V ), Lp′2(0, T ;V ′) and H,

respectively, letting n tend to zero into (3.29), we see that

∫ T

0
(ϕ(t, y(t))+ϕ∗(t, f(t)−y′(t))−(f(t), y(t)))dt +

1

2
|y(T )|2H = d∗, (3.31)

that is, y is solution to (3.27). Now, we are going to prove that d∗ = 0. To this
aim, we invoke the duality theorem for optimal convex control problems (see [5]).
Namely, we have

d∗ + min (P∗
1) = 0, (3.32)

where (P∗
1) is the dual optimization problem corresponding to (3.27), that is,
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(P∗
1) Min

{ ∫ T

0
{ϕ(t,−p(t)) + ϕ∗(t, f(t) + p′(t)) + (f(t), p(t)))dt +

1

2
|p(T )|2H ;

p ∈ Lp′1(0, T ;V ) ∩W 1,p′2(0, T ;V ′)
}
.

Clearly, for p = −y, we get min (P∗
1) ≤ d∗ and so, by (3.32), we see that

min (P∗
1) ≤ 0. (3.33)

On the other hand, if p̃ is optimal in (P∗
1), we have

(p̃′, p̃) ∈ L1(0, T ),

∫ T

0
(p̃′, p̃)dt =

1

2
(|p̃(T )|2H −

1

2
|p̃(0)|2H ). (3.34)

Indeed, we have

−(p̃′(t), p̃(t)) ≤ ϕ(t,−p̃(t)) + ϕ∗(t, f(t) + p′(t)) + (f(t), p̃(t)) a.e. t ∈ [0, T ]

and

(p̃′(t) + f(t), p̃(t)) ≤ ϕ(t, p̃(t)) + ϕ∗(t, f(t) + p̃′(t)) a.e. t ∈ [0, T ].

Since ϕ(t,−p̃) ∈ L1(0, T ), by Hypothesis (iv), it follows that ϕ(t, p̃) ∈ L1(0, T ), too,
and therefore (p̃′, p̃) ∈ L1(0, T ), as claimed.

Now, since
1

2

d

dt
|p̃(t)|2H = (p̃′(t), p̃(t)) a.e. t ∈ (0, T ),

we get (3.34), as claimed. This means that

min (P∗
1) =

∫ T

0
(ϕ(t,−p̃(t)) + ϕ∗(t, f(t) + p̃′(t)) + (f(t) + p̃′(t), p̃(t))dt

+
1

2
‖p̃(0)‖2

H ≥ 0

by virtue of (1.5)–(1.6). Then, by (3.33), we get d∗ = 0, as claimed.

The same relation (3.34) follows for y∗ and so,

1

2
(|y∗(t)|2H − |y∗(s)|2H) =

∫ t

s

((y∗)′(τ), y∗(τ))dτ, 0 ≤ s ≤ t ≤ T.

This implies that y ∈ C([0, T ];H) and

1

2
|y∗(T )|2 =

∫ T

0
((y∗)′(τ), y∗(τ))dτ.

Substituting the latter into (3.31), we have that y∗ is solution to (3.31) and also
that ∫ T

0
((ϕ(t, y∗(t)) + ϕ∗(t, f(t)(y∗)′(t)) − (f(t) − (y∗)′(t), y∗(t)) = 0.
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Hence,

ϕ(t, y∗(t)) + ϕ∗(t, f(t)(y∗)′(t)) − (f(t) − (y∗)′(t), y∗(t)) = 0 a.e t ∈ (0, T )

and, therefore, (y∗(t))′ + ∂ϕ(t, y∗(t)) ∋ f(t) a.e. t ∈ (0, T ), as claimed.
The uniqueness of a solution y∗ satisfying (1.1) is immediate by monotonicity of

u→ ∂ϕ(t, u) because, for two such solutions y∗1, y
∗
2 , we have therefore

d

dt
‖y∗1(t) − y∗2(t)‖

2
H ≤ 0 a.e. t ∈ (0, T )

and, since y∗1 − y∗2 is H-valued continuous and y∗1(T ) − y∗2(T ) = 0, we infer that
y∗1 − y∗2 ≡ 0, as claimed. This completes the proof of Theorem 2.1.

3.2 Proof of Theorem 2.2

First we note that, by hypothesis (iii), part (2.2), we have for all N > 0

ϕ∗(t, v) ≥ N‖v‖V ′ − CN , ∀v ∈ V ′.

This implies that

lim
‖v‖V ′→∞

ϕ∗(t, v)

‖v‖V ′

= +∞ uniformly in t. (3.35)

Now, coming back to (3.29), we see by (2.2) and (3.35) that

‖yn‖Lp1 (0,T ;V ) ≤ C, ∀n, (3.36)

and, by the Pettis weak compacity theorem in L1(0, T ;V ; ) (see, e.g., [4]), we have
that

{f − y′n}n is weakly compact in L1(0, T ;V ′. (3.37)

Hence, on a subsequence, again denoted n, we have

yn → y weakly in Lp1(0, T ;V ),

y′n → y′ weakly in L1(0, T ;V ′).

Then, letting n → ∞ into (3.29), we see that y ∈ W 1,1([0, T ];V ′) ∩ Lp1(0, T ;V ) is
solution to (3.27), that is, (3.31) holds.

From this point, the proof is identical with that of Theorem 2.1.
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