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Topological rings

with at most two nontrivial closed ideals
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Abstract. In this paper, we describe the Hausdorff topological rings with identity
in which every nontrivial closed ideal is topologically maximal, respectively, strongly
topologically maximal, and the Hausdorff topological rings with identity which have
no more than two nontrivial closed ideals.
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Introduction

In [4], F. Perticani determined the structure of (discrete) commutative rings
with identity in which every nontrivial ideal (i. e., distinct from the zero ideal and
the whole ring) is maximal. He proved that such a ring, E, has at most two distinct
nontrivial ideals, and if E is not simple, then either it is isomorphic to a product of
two fields or it is obtained as extension of a one-dimensional vector space over some
field, considered as ring with zero multiplication, by the same field in such a way
that the mentioned vector space structure coincides with the structure determined
by the exact sequence defining the corresponding extension.

We consider here analogous questions in the more general context of topological
rings. To be precise, we describe the (not necessarily commutative) topological
rings with identity in which every nontrivial closed ideal is topologically maximal,
respectively, strongly topologically maximal. We also determine the topological rings
with identity which have no more than two nontrivial closed ideals.

Throughout the paper, all topological rings considered are assumed to be Haus-
dorff. If E is a topological ring and A is an ideal of E, we denote by A the closure of
A in E, by annE(A) the annihilator of A in E, and by annlE(A) and annrE(A) the
left annihilator and the right annihilator of A in E, respectively. If B is a closed ideal
of E satisfying A ⊂ B, we denote by annE(B/A) the annihilator of the quotient
E-bimodule B/A in E. Also, the symbol ∼= stands for topological isomorphism.
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1 Topological rings in which every nontrivial closed ideal

is topologically maximal

As mentioned in Introduction, F. Perticani described in his paper [4] the commu-
tative rings with identity in which every nontrivial ideal is maximal. The purpose
of the present paper is to extend the results obtained in [4] to topological rings. We
begin by introducing, for topological rings, the analogue of the notion of maximal
ideal.

Definition 1. Let E be a topological ring. A closed ideal M of E is said to be
topologically maximal if M is proper (i. e., M 6= E) and for every closed ideal C of
E such that M ⊂ C, either C = M or C = E.

Definition 2. A topological ring E is said to be topologically simple in case E is
nonzero and has no nontrivial closed (two-sided) ideals.

We will need the following analogue of the well known characterization of maxi-
mal ideals.

Lemma 1. Let E be a topological ring. A closed ideal M of E is topologically

maximal if and only if E/M is topologically simple.

Proof. Let M be a closed ideal of E, and let π denote the canonical projection of E
onto E/M.

If M is topologically maximal and if C ′ is a closed ideal of E/M, then π−1(C ′)
is a closed ideal of E and M ⊂ π−1(C ′), so that π−1(C ′) coincides with either M or
E. As C ′ = π(π−1(C ′)), it follows that C ′ coincides with either the zero ideal or the
whole ring E/M.

For the converse, let C be a closed ideal of E such that M ⊂ C. Then (E/M) \
π(C) = π(E \C). Since π is open, it follows that π(C) is closed in E/M, and hence
π(C) coincides with either the zero ideal or E/M. As C = π−1(π(C)), we conclude
that either C = M or C = E.

We proceed now to study the structure of topological rings in which every non-
trivial closed ideal is topologically maximal.

Lemma 2. Let E be a topological ring in which every nontrivial closed ideal is

topologically maximal. If A and B are different nontrivial closed ideals of E, then

A+B = E and A ∩B = {0}.

Proof. Since A and B are contained in A+B, the relation A+B 6= E would imply
A = A+B = B, because A and B have to be topologically maximal. Similarly,
since A ∩ B is contained in A and in B, the relation A ∩ B 6= {0} would imply
A = A ∩B = B, because A ∩B has to be topologically maximal.

Lemma 3. Let E be a topological ring with identity, and let A and B be nontrivial

closed ideals of E such that A+B = E and A ∩B = {0}. Then annE(A) = B and

annE(B) = A.
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Proof. Since AB and BA are contained in A ∩ B, we have A ⊂ annE(B) and B ⊂
annE(A). To show the inverse inclusions, pick any u ∈ annE(B) and v ∈ annE(A).
Since A+B = E, we can write 1 = limλ∈L(aλ + bλ), where (aλ)λ∈L is a net in A
and (bλ)λ∈L is a net in B [2, Proposition 1.6.3.]. It follows that

u = u lim
λ∈L

(aλ + bλ) = lim
λ∈L

uaλ ∈ A

and

v = v lim
λ∈L

(aλ + bλ) = lim
λ∈L

vbλ ∈ B.

Consequently, annE(A) = B and annE(B) = A.

With these preparations, we have

Theorem 1. A topological ring with identity in which every nontrivial closed ideal

is topologically maximal cannot have more than two different nontrivial closed ideals.

Proof. Let E be a topological ring with identity in which every nontrivial closed ideal
is topologically maximal, and assume A,B and C are different nontrivial closed ideals
of E. By Lemma 2, we have A+B = E, so that 1 = limλ∈L(aλ+ bλ), where (aλ)λ∈L
is a net in A and (bλ)λ∈L is a net in B. Pick any nonzero c ∈ C. The multiplication
by c being continuous, it follows that

c = c · lim
λ∈L

(aλ + bλ) = lim
λ∈L

c · (aλ + bλ) ∈ C ·A+ C ·B.

But C ·A ⊂ C ∩A and C ·B ⊂ C ∩B. Since C ∩A = {0} = C ∩B by Lemma 2 and
since E is Hausdorff, this proves that CA+ CB = {0}, so c = 0, a contradiction.
Consequently, E cannot have more than two different nontrivial closed ideals.

Next we consider the case of topological rings with two nontrivial closed ideals.

Theorem 2. Let E be a topological ring with identity having two different nontrivial

closed ideals. The following statements are equivalent:

(i) E has exactly two different nontrivial closed ideals, and these ideals are not

comparable with respect to inclusion.

(ii) Every nontrivial closed ideal of E is topologically maximal.

(iii) There exist two different nontrivial closed ideals A,B of E such that the fol-

lowing conditions hold:

(1) A+B = E and A ∩B = {0};

(2) A and B are topologically simple rings.
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Proof. Clearly, (i) implies (ii). Assume (ii), and let A and B be different nontrivial
closed ideals of E. The fact that condition (1) of (iii) is satisfied follows from Lemma
2. In particular, we can write 1 = limλ∈L(aλ + bλ), where (aλ)λ∈L is a net in A
and (bλ)λ∈L is a net in B. It also follows from Lemma 3 that annE(A) = B and
annE(B) = A. To see that A is a topologically simple ring, let I be an arbitrary
nonzero closed ideal of A. For any x ∈ E and y ∈ I, we have

xy = x[lim
λ∈L

(aλ + bλ)]y = x(lim
λ∈L

aλy) = lim
λ∈L

(xaλ)y ∈ I

and

yx = y[lim
λ∈L

(aλ + bλ)]x = (lim
λ∈L

yaλ)x = lim
λ∈L

y(aλx) ∈ I,

so I is an ideal of E. In view of (ii), we must have I = A. The proof that B is a
topologically simple ring is similar, so condition (2) of (iii) also holds.

Assume (iii). The ideals A and B, whose existence is claimed in (iii), cannot
be comparable with respect to inclusion because A ∩ B = {0}. It also follows from
Lemma 3 that annE(A) = B and annE(B) = A. To see that A and B are the
unique different nontrivial closed ideals of E, pick an arbitrary closed ideal C of E.
Then A ∩ C is a closed ideal of A and B ∩ C is a closed ideal of B. Since A and
B are topologically simple rings, it follows that A ∩ C coincides with either {0} or
A and B ∩ C coincides with either {0} or B. We distinguish cases. If A ∩ C = A
and B ∩ C = B, we have A ⊂ C and B ⊂ C, so that E = A+B ⊂ C, and
hence in this case C = E. Next assume A ∩ C = {0} and B ∩ C = {0}. Since
AC, CA ⊂ A ∩ C, we have AC = {0} = CA, so that C ⊂ annE(A) = B. In
a similar way, C ⊂ annE(B) = A. As A ∩ B = {0}, it follows that in this case
C = {0}. Now assume A ∩ C = {0} and B ∩ C = B. As we have seen, the relation
A∩C = {0} gives C ⊂ B. Since the relation B∩C = B gives B ⊂ C, it follows that
in this case C = B. Finally, if A ∩C = A and B ∩C = {0}, we get in a similar way
C = A. Consequently, E admits only two different nontrivial closed ideals, namely
A and B.

In view of Theorem 2, it would be interesting to know when a topological ring
with exactly two nontrivial closed ideals is topologically isomorphic to the direct
product of those ideals. To answer this question, we need a new

Definition 3. Let E be a topological ring and M a closed ideal of E. We say M is
strongly topologically maximal if M is topologically maximal and if for any closed
ideal C of E, M + C is closed in E.

Lemma 4. Let E be a topological ring. A proper closed ideal M of E is strongly

topologically maximal if and only if for each closed ideal C of E such that C 6⊂ M
one has M + C = E.

Proof. AssumeM is strongly topologically maximal, and let C be an arbitrary closed
ideal of E such that C 6⊂M. Since M + C is closed in E and properly contains M,
we must have M + C = E.
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Assume the converse. Given an arbitrary closed ideal C of E, we then have
M +C = M if C ⊂M and M +C = E if C 6⊂M, so that M +C is closed in E. It
is also clear that M is topologically maximal.

We have the following

Theorem 3. Let E be a topological ring with identity having two different nontrivial

closed ideals A and B. Every nontrivial closed ideal of E is strongly topologically

maximal if and only if A and B are topologically simple rings, and E ∼= A×B.

Proof. If every nontrivial closed ideal of E is strongly topologically maximal, it
follows from Theorem 2 that A ∩ B = {0}, A+B = E, and A,B are topologically
simple rings. Further, A+B = A+B by Lemma 4, and hence E ∼= A×B by [1, Ch.
III, §6, Exer. 6].

Now assume that A and B are topologically simple rings, and that there is an
isomorphism of topological rings h : E → A × B. Set A′ = h−1(A × {0}) and
B′ = h−1({0} × B). It follows that A′ + B′ = E and A′ ∩ B′ = {0}, so that,
by Theorem 2, A′ and B′ are the only nontrivial closed ideals of E. In particular
{A′, B′} = {A,B}. If C is an arbitrary closed ideal of E such that C 6⊂ A, then C
coincides with either B or E, so that A+C = E, and hence A is strongly topologically
maximal by Lemma 4. Clearly, the same holds also for B.

2 Topological bimodule structures induced by ideal extensions

Let A
ϕ
−→ E

ψ
−→ B be an exact sequence of abstract rings and homomorphisms

of rings, that is such that ker(ϕ) = {0}, im(ϕ) = ker(ψ), and im(ψ) = B. As is well
known (see [3] or [4]), if A2 = {0}, then A can be given a bimodule structure over
B.

We establish here a topological version of this fact.

Definition 4. Let A and B be arbitrary topological rings. A topological ring E is
said to be an ideal extension of A by B if there exist continuous ring homomorphisms
ϕ : A→ E and ψ : E → B such that the following conditions hold:

(i) ϕ is injective and open onto its image;

(ii) ψ is surjective and open;

(iii) im(ϕ) = ker(ψ).

If, in addition, E has an identity, then it is called a unital ideal extension of A
by B.

Clearly, if A
ϕ
−→ E

ψ
−→ B is a unital ideal extension of A by B, then B has an

identity too and ψ is unital.
As usual, when we want to emphasize explicitly the homomorphisms ϕ : A→ E

and ψ : E → B making E an ideal extension of A by B, we identify E with the

sequence A
ϕ
−→ E

ψ
−→ B.
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Lemma 5. Let A
ϕ
−→ E

ψ
−→ B be an ideal extension of A by B. Then annA(A) can

be turned into a topological bimodule over B.

Proof. The multiplication of E determines a B-bimodule structure on annA(A) in
the following way. Let a ∈ annA(A) and b ∈ B be arbitrary. Since ψ is surjective,
there is c ∈ E such that b = ψ(c). Then ϕ(a)c and cϕ(a) belong to ϕ(A) because
ϕ(A) is an ideal of E. Given any x ∈ A, we have (ϕ(a)c)ϕ(x) = ϕ(a)(cϕ(x)) = 0
and ϕ(x)(ϕ(a)c) = ϕ(xa)c = ϕ(0)c = 0, so that in fact ϕ(a)c ∈ annϕ(A)

(

ϕ(A)
)

.
Similarly, cϕ(a) ∈ annϕ(A)

(

ϕ(A)
)

. Set ab = ϕ−1
(

ϕ(a)c
)

and ba = ϕ−1
(

cϕ(a)
)

. To
see that the products ab and ba are well defined, let c′ be another element in E such
that ψ(c′) = b. Then c − c′ ∈ ker(ψ) = im(ϕ), and since a ∈ annA(A) and hence
ϕ(a) ∈ annϕ(A)

(

ϕ(A)
)

, we have ϕ(a)(c − c′) = 0 = (c − c′)ϕ(a). Consequently, ab
and ba are well defined. It is now easy to see that annA(A) is a bimodule over B,
with respect to its addition induced from A and scalar multiplications defined above.
Moreover, the addition is, clearly, continuous.

Let us show that the left scalar multiplication is continuous. The case of the
right scalar multiplication is similar. Fix any elements a ∈ annA(A) and b ∈ B, and
any neighbourhood V of zero in A. Also choose c ∈ E such that ψ(c) = b. Since ϕ
is open onto its image, ϕ(V ) is a neighbourhood of zero in ϕ(A). Now, since ϕ(A)
is a topological left E-module, there exist a neighbourhood U of zero in E and a
neighbourhood W of zero in ϕ(A) such that

UW ⊂ ϕ(V ), Uϕ(a) ⊂ ϕ(V ) and cW ⊂ ϕ(V ).

As ϕ is continuous and ψ is open, ϕ−1(W ) is a neighbourhood of zero in A and ψ(U)
is a neighbourhood of zero in B. By the definition of the left scalar multiplication,
we then have

ψ(U)
(

ϕ−1(W ) ∩ annA(A)
)

⊂ V ∩ annA(A), ψ(U)a ⊂ V ∩ annA(A)

and

b
(

ϕ−1(W ) ∩ annA(A)
)

⊂ V ∩ annA(A),

so the left scalar multiplication (β, α) → βα from B × annA(A) to annA(A) is
continuous at (0, 0), and the mappings β → βa from B to annA(A) and α → bα
from annA(A) to annA(A) are continuous at 0. Since a and b were arbitrary, it
follows from [5, (2.16)] that the left scalar multiplication is continuous.

Definition 5. The topological B-bimodule structure of annA(A) described above
will be referred to as the topological B-bimodule structure determined by the se-

quence A
ϕ
−→ E

ψ
−→ B.

Corollary 1. Let A and B be topological rings, and let A
ϕ
−→ E

ψ
−→ B be an ideal

extension of A by B.
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(i) If A contains a closed ideal K such that (A/K)2 = {0}, then A/K can be

turned into a topological bimodule over B.

(ii) If B0 is a closed ideal of B such that ψ−1(B0)
2 = {0}, then ψ−1(B0) can be

turned into a topological bimodule over B/B0.

Proof. (i) Let λ : A → A/K and ̺ : E → E/K be the canonical projections. As
is well known, there exist continuous ring homomorphisms ϕ̂ : A/K → E/K and
ψ̂ : E/K → B such that ̺ ◦ ϕ = ϕ̂ ◦ λ and ψ = ψ̂ ◦ ̺. Moreover, ϕ̂ and ψ̂ are open
onto their images,

ker(ϕ̂) = ker(̺ ◦ ϕ)/K = {0}, im(ψ̂) = im(ψ)

and

ker(ψ̂) = ker(ψ)/K = ϕ(A)/K = im(ϕ̂).

Consequently, the homomorphisms ϕ̂ : A/K → E/K and ψ̂ : E/K → B make E/K
an ideal extension of A/K by B. Since (A/K)2 = {0}, it follows from Lemma 5 that
A/K can be given a topological bimodule structure over B.

(ii) Let η : ψ−1(B0) → E be the canonical injection of ψ−1(B0) into E and
π : B → B/B0 the canonical projection of B onto B/B0. Then η and π ◦ψ are open
onto their images, η is injective, π◦ψ is surjective, and im(η) = ψ−1(B0) = ker(π◦ψ),
so that η and π ◦ ψ transform E into an ideal extension of ψ−1(B0) by B/B0. By
Lemma 5, ψ−1(B0) can be given a topological bimodule structure over B/B0.

Definition 6. The topological B-bimodule structure of A/K described above is
referred to as the topological B-bimodule structure determined on A/K by the

sequence A
ϕ
−→ E

ψ
−→ B.

Similarly, the topological B/B0-bimodule structure of ψ−1(B0) described above
is referred to as the topological B/B0-bimodule structure determined on ψ−1(B0)

by the sequence A
ϕ
−→ E

ψ
−→ B.

Lemma 6. Let A
ϕ
−→ E

ψ
−→ B be an ideal extension of A by B. Then annlA(A) can

be turned into a topological right B-module. Similarly, annrA(A) can be turned into

a topological left B-module.

Proof. The multiplication by scalars in annlA(A) (respectively, annrA(A)) is given
by ab = ϕ−1(ϕ(a)c) (respectively, ba = ϕ−1(cϕ(a))) for a ∈ annlA(A) (respectively,
a ∈ annrA(A)), b ∈ B, and c ∈ E with b = ψ(c).

Definition 7. The topological B-module structure of annlA(A) (respectively,
annrA(A)) described above is referred to as the topological B-module structure de-

termined on annlA(A) (respectively, annrA(A)) by the sequence A
ϕ
−→ E

ψ
−→ B.



84 VALERIU POPA

3 Topological rings with only one nontrivial closed ideal

In this section, we relate the study of topological rings with only one nontrivial
closed ideal to an extension problem, although the cohomology theory for topological
rings is not constructed yet.

We use the following simple

Lemma 7. Let E be a ring and A a nonzero ideal of E. If

annlE(A) = {0} = annrE(A),

then for any nonzero x ∈ A, AxA is nonzero.

Proof. Pick any nonzero x ∈ A. Since x /∈ annrE(A), there exists a ∈ A such that
ax 6= 0. Similarly, since ax /∈ annlE(A), there exists a′ ∈ A such that axa′ 6= 0.
Hence AxA 6= {0}.

Definition 8. Let E be a topological ring. A topological module (respectively,
bimodule) A over E is said to be topologically simple in case A is nonzero and has
no nontrivial closed submodules (respectively, subbimodules).

Theorem 4. Let E be a topological ring with identity having only one nontrivial

closed ideal A. Then E/A is a unital topologically simple ring, and E can be viewed

as an ideal extension A
η
−→ E

π
−→ E/A of A by E/A, where η is the canonical injection

and π is the canonical projection, such that exactly one of the following conditions

hold:

(i) annE(A) = {0} and A is a topologically simple ring;

(ii) annE(A) = A and A, with the structure given by the sequence A
η
−→ E

π
−→ E/A,

is a unital topologically simple E/A-bimodule.

Proof. Consider the natural exact sequence A
η
−→ E

π
−→ E/A, where η is the canonical

injection and π is the canonical projection. As is well known, η and π are continuous
and open onto their images. Now, since A is the only nontrivial closed ideal of E, it
is clear that E/A is a unital topologically simple ring. Further, since E has an iden-
tity, we cannot have annE(A) = E, so that either annE(A) = {0} or annE(A) = A.
Assume the former, and consider the one-sided annihilators annlE(A) and annrE(A).
Clearly, annlE(A) and annrE(A) are closed ideals of E. As in the case of annE(A),
we have annlE(A) 6= E and annrE(A) 6= E. On the other hand, either of equalities
annlE(A) = A or annrE(A) = A implies annE(A) = A, in contradiction with our as-
sumption that annE(A) = {0}. Therefore we must have annlE(A) = {0} = annrE(A).
To see that A is a topologically simple ring, pick an arbitrary nonzero closed ideal B
of A and any nonzero element b ∈ B. By Lemma 7, AbA is a nonzero closed ideal of
A satisfying AbA ⊂ B. Since A is an ideal of E, it then follows that AbA is a nonzero
closed ideal of E, whence AbA = A, so B = A. Consequently, A is a topologically
simple ring, and hence in this case we are led to (i).
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Now consider the latter case when annE(A) = A. By using the sequence A
η
−→

E
π
−→ E/A, it follows from Lemma 5 that A can be turned into a topological bimodule

over E/A. Moreover, if a ∈ A, then a · π(1) = a · 1 = a and π(1) · a = 1 · a = a,
so this bimodule is unital. Pick an arbitrary nonzero closed E/A-subbimodule C of
A. Taking into account the definition of scalar multiplications, we see that for any
x ∈ E,

xC = π(x)C ⊂ C and Cx = Cπ(x) ⊂ C,

so C is a nonzero closed ideal of E contained in A, whence C = A. Since the E/A-
subbimodule C was picked arbitrarily, it follows that A is a topologically simple
E/A-bimodule, and hence in this case we have (ii).

We next show that the converse is also true.

Theorem 5. Let A and B be topologically simple rings, and let A
ϕ
−→ E

ψ
−→ B be

an ideal extension of A by B. If annE(ϕ(A)) = {0}, then E has only one nontrivial

closed ideal, namely ϕ(A).

Proof. Clearly, ϕ(A) is a nontrivial closed ideal of E. Moreover, if K is a closed ideal
of E such that ϕ(A) ⊂ K, then B \ ψ(K) = ψ(E \K) is open in B, so that ψ(K)
is closed in B. Since B is topologically simple, it follows that either ψ(K) = {0}
or ψ(K) = B, and hence either K = A or K = E. Consequently, the ideal ϕ(A) is
topologically maximal.

Now, let C be an arbitrary closed ideal of E. Then ϕ(A) ∩ C is a closed ideal
of ϕ(A). If ϕ(A) ∩ C 6= {0}, we must have ϕ(A) ∩ C = ϕ(A) because ϕ(A) is a
topologically simple ring. It follows that ϕ(A) ⊂ C, and hence C coincides with
either ϕ(A) or E because ϕ(A) is topologically maximal in E. Suppose ϕ(A) ∩C =
{0}. Since ϕ(A)C and Cϕ(A) are contained in ϕ(A) ∩ C, it follows that ϕ(A)C =
{0} = Cϕ(A), so C ⊂ annE

(

ϕ(A)
)

, and hence C = {0}. Thus E has only one
nontrivial closed ideal.

Theorem 6. Let A be a topological ring with annA(A) = A, let B be a topologically

simple ring with identity, and let A
ϕ
−→ E

ψ
−→ B be a unital ideal extension of A

by B. If A is a topologically simple B-bimodule relative to the bimodule structure

determined by the sequence A
ϕ
−→ E

ψ
−→ B, then E has only one nontrivial closed

ideal, namely ϕ(A).

Proof. Clearly, ϕ(A) is a nonzero closed ideal of E. Moreover, since E/ϕ(A) is
topologically isomorphic to B, ϕ(A) is topologically maximal by Lemma 1. Let
C be a nonzero closed ideal of E. It is easy to see that ϕ(A) ∩ C is then a B-
subbimodule of ϕ(A). We cannot have ϕ(A)∩C = {0}. For, otherwise it would follow
that ϕ(A) +C = E, since ϕ(A) + C would then properly contain ϕ(A). Hence there
would exist a net (aλ)λ∈L of elements in A and a net (cλ)λ∈L of elements in C with
limλ∈L

(

(ϕ(aλ) + cλ
)

= 1. For any λ, λ′ ∈ L, we would have
(

ϕ(aλ) + cλ
)(

ϕ(aλ′) + cλ′
)

= ϕ(aλ)cλ′ + cλϕ(aλ′) + cλcλ′ ∈ C
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since ϕ(A) has zero multiplication. Taking the limit first relative to λ and then
relative to λ′, we would obtain that 1 ∈ C, so C = E, in contradiction with our
assumption that ϕ(A)∩C = {0}. Thus ϕ(A)∩C 6= {0}, and hence ϕ(A)∩C = ϕ(A)
because ϕ(A) is a topologically simple B-bimodule. It follows that ϕ(A) ⊂ C, so
that C must coincide with either ϕ(A) or E, because ϕ(A) is topologically maximal
in E. Consequently, E has only one nontrivial closed ideal.

4 Topological rings with only two different nontrivial closed ideals

In this section, we turn our attention to topological rings with exactly two non-
trivial closed ideals. First we consider the case when the corresponding ideals are
incomparable with respect to inclusion or, equivalently, disjoint.

Theorem 7. Let E be a topological ring with identity having only two different

nontrivial closed ideals. Assume that these ideals are not comparable with respect

to inclusion, and let A denote one of them. Then A is a topologically simple ring,

annE(A) 6= {0}, E/A is a topologically simple ring with identity, and E can be

viewed as a unital ideal extension A
η
−→ E

π
−→ E/A of A by E/A, where η is the

canonical injection and π is the canonical projection.

Proof. The assertion follows from Theorem 2 and Lemma 3.

Theorem 8. Let A be a topologically simple ring, let B be a topologically simple

ring with identity, and let A
ϕ
−→ E

ψ
−→ B be a unital ideal extension of A by B such

that annE
(

ϕ(A)
)

6= {0}. Then E has exactly two nontrivial closed ideals, namely

ϕ(A) and annE
(

ϕ(A)
)

.

Proof. Clearly, ϕ(A) is a nontrivial closed ideal of E. Moreover, since E/ϕ(A) ∼=
B, ϕ(A) is topologically maximal in E. Further, since E is unital, we must have
annE

(

ϕ(A)
)

6= E, so annE
(

ϕ(A)
)

is a nontrivial closed ideal of E as well.

Let C be an arbitrary nonzero closed ideal of E. Then ϕ(A)∩C is a closed ideal
of ϕ(A). Since ϕ(A) is topologically simple, it follows that either ϕ(A)∩C = {0} or
ϕ(A)∩C = ϕ(A). Assume the former holds. Since ϕ(A)C and Cϕ(A) are contained
in ϕ(A)∩C, we conclude that C ⊂ annE

(

ϕ(A)
)

. But, since C is nonzero, ϕ(A) + C

properly contains ϕ(A), so ϕ(A) +C = E. It follows that

annE
(

ϕ(A)
)

= E · annE
(

ϕ(A)
)

= (ϕ(A) + C) · annE
(

ϕ(A)
)

= C · annE
(

ϕ(A)
)

⊂ C,

and hence C = annE
(

ϕ(A)
)

.
In the latter case when ϕ(A) ∩ C = ϕ(A), we have ϕ(A) ⊂ C. Since ϕ(A) is

topologically maximal in E, it follows that C coincides with either ϕ(A) or E.

In the following, we consider the case of topological rings with exactly two non-
trivial closed ideals and such that the corresponding ideals are comparable with
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respect to inclusion. We first determine under what conditions the topological rings
of this type can be realized as ideal extensions of a topologically simple ring by a
topological ring with only one nontrivial closed ideal.

Theorem 9. Let E be a topological ring with identity having only two different

nontrivial closed ideals A and B. If A ⊂ B, then E/A is a topological ring with

identity containing only one nontrivial closed ideal, and E can be viewed as an ideal

extension A
η
−→ E

π
−→ E/A of A by E/A, where η is the canonical injection and π is

the canonical projection, such that exactly one of the following conditions hold:

(i) annE(A) = {0} and A is a topologically simple ring;

(ii) annE(A) = A and A, with the structure given by the sequence A
η
−→ E

π
−→ E/A,

is a topologically simple (E/A)-bimodule;

(iii) annE(A) = B, B2 coincides with either A or B, and A, with the structure given

by the sequence A
η
−→ E

π
−→ E/A, is a topologically simple (E/A)-bimodule;

(iv) B2 = {0} and the topological E/B-bimodule B, determined by the sequence

A
η
−→ E

π
−→ E/A, has only one nontrivial closed subbimodule.

Proof. Since A and B are the only nontrivial closed ideals of the unital ring E,
it follows that annE(A) coincides with one of the ideals {0}, A, or B. Now, if
annE(A) = {0}, we must have annlE(A) = {0} = annrE(A). For, if one of the ideals
annlE(A) or annrE(A) coincided with either A or B, it would follow that annE(A) 6=
{0}. Pick an arbitrary nonzero closed ideal C of A, and let c ∈ C be a nonzero
element. It follows from Lemma 7 that AcA is a nonzero closed ideal of A and hence
of E, so AcA = A, whence C = A. Consequently, A is a topologically simple ring,
and hence in this case we are led to (i). Next, if annE(A) = A, it follows from Lemma
5 that A can be turned into a topological bimodule over E/A. Since every closed
subbimodule of A is a closed ideal of E, we deduce that A is a topologically simple
E/A-bimodule. Thus in this case we have (ii). Further, assume annE(A) = B. If
B2 6= {0}, it follows from our hypothesis that B2 coincides with either A or B. Since,
as above, A can be turned into a topologically simple E/A-bimodule, in this case
we must have (iii). Finally, if B2 = {0}, it follows from Corollary 1 that B can be
turned into a topological bimodule over (E/A)/(B/A) ∼= E/B. Let C be a closed
subbimodule of B. We see that for any x ∈ E,

xC =
(

(x+A) +B/A
)

C ⊂ C and Cx = C
(

(x+A) +B/A
)

⊂ C.

It follows that C is a closed ideal of E contained in B, so C must coincides with one
of the ideals {0}, A, or B. Consequently, the topological E/A-bimodule B has only
one nontrivial closed subbimodule, and hence in this case we are led to (iv).

Theorem 10. Let A be a nonzero topological ring, let B be a topological ring with

identity having only one nontrivial closed ideal B0, and let A
ϕ
−→ E

ψ
−→ B be a unital

ideal extension of A by B satisfying one of the following conditions:
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(i) annE
(

ϕ(A)
)

= {0} and A is a topologically simple ring;

(ii) annE
(

ϕ(A)
)

= ϕ(A) and A is a topologically simple B-bimodule relative to the

structure given by the sequence A
ϕ
−→ E

ψ
−→ B;

(iii) annE
(

ϕ(A)
)

= ψ−1(B0), ψ−1(B0)2 coincides with either ϕ(A) or ψ−1(B0),
and A is a topologically simple B-bimodule relative to the structure given by

the sequence A
ϕ
−→ E

ψ
−→ B;

(iv) ψ−1(B0)
2 = {0} and the topological (B/B0)-bimodule ψ−1(B0), determined by

the sequence A
ϕ
−→ E

ψ
−→ B, has only one nontrivial closed subbimodule.

Then E has exactly two nontrivial closed ideals, namely ϕ(A) and ψ−1(B0).

Proof. It is clear that ϕ(A) 6= {0} and that ψ−1(B0) is the only closed ideal of E
satisfying ϕ(A) ( ψ−1(B0) ( E. Pick an arbitrary closed ideal C of E. If C∩ϕ(A) =
ϕ(A), then ϕ(A) ⊂ C, so that C coincides with one of the ideals ϕ(A), ψ−1(B0), or
E. Assume C ∩ ϕ(A) 6= ϕ(A). We shall show that, in any of cases (i)-(iv), C = {0}.
First observe that we must have C ∩ ϕ(A) = {0}. Indeed, this is clear in case (i)
holds, since then C ∩ ϕ(A) is a closed ideal of the topologically simple ring ϕ(A).
Further, in either of cases (ii) or (iii) C ∩ ϕ(A) is a closed B-subbimodule of the
topologically simple B-bimodule ϕ(A), and so C ∩ ϕ(A) = {0}. Finally, in case
(iv) holds, it is clear that C ∩ ϕ(A) is a closed (B/B0)-subbimodule of ψ−1(B0),
so C ∩ ϕ(A) = {0} because ψ−1(B0) has only one nontrivial closed subbimodule,
namely ϕ(A). This proves that in any of cases (i)-(iv), C ∩ ϕ(A) = {0}. Now, since
C ·ϕ(A) and ϕ(A) ·C are contained in C∩ϕ(A), it follows that C ⊂ annE

(

ϕ(A)
)

. In
particular, C = {0} if (i) holds. In case (ii) holds, C becomes a closed subbimodule
of the topologically simple B-bimodule ϕ(A), so again C = {0}. Further, in case
(iv) holds, we clearly have annE

(

ϕ(A)
)

= ψ−1(B0), so C = {0} by our hypothesis
that ϕ(A) is the only nontrivial closed (B/B0)-subbimodule of ψ−1(B0) and the
fact that C ∩ ϕ(A) = {0}. Assume (iii). If we had C 6= {0}, it would follow that
C + ϕ(A) = ψ−1(B0), which would imply

C2 = (C + ϕ(A))(C + ϕ(A)) = ψ−1(B0)2.

But then, in case ψ−1(B0)2 = ϕ(A), we would have ϕ(A) = C2 ⊂ C∩ϕ(A). Similarly,
in case ψ−1(B0)2 = ψ−1(B0), we would have C = ψ−1(B0). In both cases the derived
conclusion is in contradiction with the fact that C ∩ ϕ(A) = {0}.

Next we complete the picture by determining under what conditions topological
rings with exactly two nontrivial closed ideals can be realized as extensions of a
topological ring with only one nontrivial closed ideal by a topologically simple ring.

Definition 9. Let E be a topological ring. A closed ideal M of E is said to be a
topologically minimal ideal of E if M 6= {0} and for every closed ideal C of E such
that C ⊂M, either C = {0} or C = M.
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Theorem 11. Let E be a topological ring with identity having only two different

nontrivial closed ideals A and B. If A ⊂ B, then E/B is a topologically simple ring

with identity, and E can be viewed as an ideal extension B
η
−→ E

π
−→ E/B of B by

E/B, where η is the canonical injection and π is the canonical projection, such that

exactly one of the following conditions hold:

(i) The ideals AB, BA and annE(B/A) coincide with A, and B has only one

nontrivial closed ideal;

(ii) AB = A = BA, annE(B/A) = B, A is a topologically minimal ideal of B, and

the topological E/B-bimodule B/A, determined by the sequence B
η
−→ E

π
−→

E/B, is topologically simple;

(iii) AB = A = annrE(B), B2 = B, and A is a topologically maximal ideal of B and

a unital topologically simple left E/B-module relative to the structure given by

the sequence B
η
−→ E

π
−→ E/B;

(iv) BA = A = annlE(B), B2 = B, and A is a topologically maximal ideal of B and

a unital topologically simple right E/B-module relative to the structure given

by the sequence B
η
−→ E

π
−→ E/B;

(v) annE(B) = A, annE(B/A) = A, B2 = B, and A is a topologically maxi-

mal ideal of B and a unital topologically simple E/B-bimodule relative to the

structure given by the sequence B
η
−→ E

π
−→ E/B;

(vi) annE(B) = A, annE(B/A) = B, and A and B/A are unital topologically

simple E/B-bimodules relative to the structures given by the sequence B
η
−→

E
π
−→ E/B;

(vii) annE(B) = B, and the topological E/B-bimodule B, determined by the se-

quence B
η
−→ E

π
−→ E/B, has only one nontrivial closed subbimodule.

Proof. Since A and B are the only nontrivial closed ideals of E and since A ⊂ B,
it is clear that E/B is a topologically simple ring. It is also clear that annE(B)
coincides with one of the ideals {0}, A, or B.

We first consider the case when annE(B) = {0}. Then, clearly, at least one of
the ideals AB and BA is nonzero. Suppose first that AB and BA are both nonzero.
Since AB and BA are contained in A, it follows that AB = A = BA. In particular,
since A is the smallest nonzero closed ideal of E, we conclude that annlE(B) =
{0} = annrE(B). Further, since A ⊂ annE(B/A), we have either annE(B/A) = A or
annE(B/A) = B. Assume the former holds. Then we must have annlE(B/A) = A
and annrE(B/A) = A. For, if we had either annlE(B/A) = B or annrE(B/A) = B,
it would follow that annE(B/A) = B, a contradiction. Thus annlE(B/A) = A =
annrE(B/A). Pick an arbitrary nonzero closed ideal C of B.Given any nonzero c ∈ C,
it follows from Lemma 7 that BcB is a nonzero ideal of B and hence of E, whence
BcB coincides with either A or B. Consequently, if C ⊂ A, we must have C = A.
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Suppose C 6⊂ A, and pick any c ∈ C \ A. Since annlE(B/A) = A, there exists b ∈ B
such that cb /∈ A. Similarly, since annrE(B/A) = A, there exists b′ ∈ B such that
b′cb /∈ A. It follows that BcB = B, so C = B, and hence in this case we are led to
(i). Now assume the latter case when annE(B/A) = B holds. Then (B/A)2 = {0},
so that, by Corollary 1, B/A can be turned into a topological bimodule over E/B
by setting

(b+A)(x+B) = (b+A)(x+A) = bx+A

and

(x+B)(b+A) = (x+A)(b+A) = xb+A

for all b ∈ B and x ∈ E. To see that this bimodule is topologically simple, pick
an arbitrary closed E/B-subbimodule C ′ of B/A. Letting ϕ : B → B/A be the
canonical projection, set C = ϕ−1(C ′). Since, for any c ∈ C and x ∈ E, we have
cx + A = (c + A)(x + B) ∈ C ′ and xc + A = (x + B)(c + A) ∈ C ′, it follows that
C is a proper closed ideal of E containing A, so C coincides with either A or B,
which proves that C ′ is trivial in B/A. Further, given any nonzero a ∈ A, we deduce
by Lemma 7 and the fact that B2 ⊂ A, that BaB is a nonzero closed ideal of B
and hence of E, which is contained in A, whence BaB = A. It follows that A is a
topologically minimal ideal of B, so in this case we have (ii).

Now let us suppose that AB 6= {0} and BA = {0}. Then, clearly, AB = A and

B2 6= {0}. If we had B2 = A, it would follow that AB = B2B = BB2 = BA = {0},
a contradiction. Thus B2 = B, and hence annrE(B) = A. By using the sequence

B
η
−→ E

π
−→ E/B, we see from Lemma 6 that A can be turned into a topological left

E/B-module. If C is a closed submodule of A, then C is clearly a closed ideal of E
contained in A, so either C = {0} or C = A. This proves that A is a topologically
simple E/B-module. Now let C be a closed ideal of B properly containing A, and
pick any c ∈ C \ A. Since B2 = B, there is b ∈ B such that bc 6∈ A. Analogously,
there is b′ ∈ B such that bcb′ 6∈ A. It follows that BcB is a closed ideal of B, and
hence of E, which properly contains A, so BcB = B, whence C = B. Consequently,
A is topologically maximal in B, and thus in this case we have (iii).

Similarly, in the remaining case when AB = {0} and BA 6= {0}, we have (iv).
Next we consider the case when annE(B) = A. It follows from Lemma 5 that

A can be turned into a topological bimodule over E/B by setting a(x + B) = ax
and (x + B)a = xa for all a ∈ A and x ∈ E. Letting C be a nonzero closed E/B-
subbimodule of A, pick any c ∈ C and x ∈ E. Since cx = c(x + B) ∈ C and
xc = (x+B)c ∈ C, we see that C is an ideal of E, which gives C = A. Hence A is a
topologically simple E/B-bimodule. Further, let us consider annE(B/A). We must
have either annE(B/A) = A or annE(B/A) = B. If the former holds, then B2 6⊂ A,
so that B2 = B. We also deduce as above that annlE(B/A) = A = annrE(B/A).
Let C be an arbitrary closed ideal of B properly containing A, and pick any c ∈
C \ A. Since annlE(B/A) = A, there exists b ∈ B such that cb /∈ A. Similarly, since
annrE(B/A) = A, there exists b′ ∈ B such that b′cb /∈ A. It follows that BcB is a
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closed ideal of E which is not contained in A, so BcB = B, whence C = B, proving
that A is topologically maximal in B. Hence in this case we are led to (v). Now
assume the latter case when annE(B/A) = B holds. Then (B/A)2 = {0}, so B/A
can be turned into a topological bimodule over E/B. As above, we can see that if
C ′ is arbitrary nonzero closed E/B-subbimodule of B/A and ϕ : B → B/A is the
canonical projection, then ϕ−1(C ′) coincides with either A or B. Consequently, in
this case we are led to (vi).

Now we consider the case when annE(B) = B. By Lemma 5, B can be turned
into a topological bimodule over E/B. If C is a nontrivial closed E/B-subbimodule
of B, it is easy to see that C is an ideal of E, and so we must have C = A. Thus in
this case we are led to (vii).

Theorem 12. Let A be a topological ring having a nontrivial closed ideal A0, let B

be a topologically simple ring with identity, and let A
ϕ
−→ E

ψ
−→ B be a unital ideal

extension of A by B satisfying one of the following conditions:

(i) A0A = A0 = AA0, annE
(

ϕ(A)/ϕ(A0)
)

= ϕ(A0), and A has only one nontriv-

ial closed ideal;

(ii) A0A = A0 = AA0, annE
(

ϕ(A)/ϕ(A0)
)

= ϕ(A), A0 is a topologically minimal

ideal of A, and the topological B-bimodule A/A0, determined by the sequence

A
ϕ
−→ E

ψ
−→ B, is topologically simple;

(iii) ϕ(A0A) = ϕ(A0) = annrE
(

ϕ(A)
)

, A2 = A, and A0 is a topologically maxi-

mal ideal of A and a unital topologically simple left B-module relative to the

structure given by the sequence A
ϕ
−→ E

ψ
−→ B;

(iv) ϕ(AA0) = ϕ(A0) = annlE
(

ϕ(A)
)

, A2 = A, and A0 is a topologically maxi-

mal ideal of A and a unital topologically simple right B-module relative to the

structure given by the sequence A
ϕ
−→ E

ψ
−→ B;

(v) annE
(

ϕ(A)
)

= ϕ(A0), annE
(

ϕ(A)/ϕ(A0)
)

= ϕ(A0), A2 = A, and A0 is a

topologically maximal ideal of A and a unital topologically simple B-bimodule

relative to the structure given by the sequence A
ϕ
−→ E

ψ
−→ B;

(vi) annE
(

ϕ(A)
)

= ϕ(A0), annE
(

ϕ(A)/ϕ(A0)
)

= ϕ(A), and A0 and A/A0 are

unital topologically simple B-bimodules relative to the structures given by the

sequence A
ϕ
−→ E

ψ
−→ B;

(vii) annE
(

ϕ(A)
)

= ϕ(A), and the topological B-bimodule A, determined by the

sequence A
ϕ
−→ E

ψ
−→ B, has only one nontrivial closed subbimodule.

Then E has exactly two nontrivial closed ideals, namely ϕ(A0) and ϕ(A).
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Proof. Clearly, ϕ(A0) and ϕ(A) are distinct nontrivial closed ideals of E satisfying
ϕ(A0) ⊂ ϕ(A). Moreover, ϕ(A) is topologically maximal in E because E/ϕ(A) ∼= B.
Let C be an arbitrary closed ideal of E. If C ∩ϕ(A) = ϕ(A), then ϕ(A) ⊂ C, so that
C coincides with one of the ideals ϕ(A) or E since ϕ(A) is topologically maximal.

Assume C ∩ϕ(A) 6= ϕ(A). We first show that in any of cases (i) - (vii), C ∩ϕ(A)
coincides with either {0} or ϕ(A0). Indeed, this is clear in case (i) holds because
C ∩ ϕ(A) is a closed ideal of ϕ(A).

Assume (ii) holds, and suppose C ∩ ϕ(A) 6= {0}. Since annE
(

ϕ(A)
)

= {0},
we cannot have

(

C ∩ ϕ(A)
)

ϕ(A) = {0} = ϕ(A)
(

C ∩ ϕ(A)
)

. On the other hand,
(

C ∩ ϕ(A)
)

ϕ(A) and ϕ(A)
(

C ∩ ϕ(A)
)

are contained in ϕ(A0) by our hypothesis
that annE

(

ϕ(A)/ϕ(A0)
)

= ϕ(A). Since ϕ(A0) is topologically minimal in ϕ(A),
it follows that either

(

C ∩ ϕ(A)
)

ϕ(A) or ϕ(A)
(

C ∩ ϕ(A)
)

coincides with ϕ(A0),
whence ϕ(A0) ⊂ C ∩ ϕ(A). As the B-bimodule ϕ(A)/ϕ(A0) is topologically simple,
we deduce that C ∩ ϕ(A) coincides with ϕ(A0).

In the following, we consider (iii), (iv), (v) and (vi) simultaneously. By hypothe-
ses, in every of cases (iii), (iv) and (v) we have ϕ(A)2 = ϕ(A). We first show that
if (vi) holds, then ϕ(A)2 = ϕ(A0). Indeed, since annE

(

ϕ(A)/ϕ(A0)
)

= ϕ(A), we

have ϕ(A)2 ⊂ ϕ(A0), so that ϕ(A)2 is a closed B-subbimodule of ϕ(A0). Moreover,
ϕ(A)2 6= {0} because annE

(

ϕ(A)
)

= ϕ(A0). Since ϕ(A0) is a topologically simple

B-bimodule, we get ϕ(A)2 = ϕ(A0).

Now, in every of cases (iii), (iv) and (v), if C ∩ ϕ(A) ⊂ ϕ(A0), we must have
either C ∩ ϕ(A) = {0} or C ∩ ϕ(A) = ϕ(A0) because C ∩ ϕ(A) is a B-submodule
(respectively, B-subbimodule) of ϕ(A0) and ϕ(A0) is topologically simple. We next
show that C ∩ ϕ(A) 6⊂ ϕ(A0) leads to a contradiction. Indeed, suppose C ∩ ϕ(A) 6⊂
ϕ(A0), so that (C ∩ ϕ(A)) + ϕ(A0) properly contains ϕ(A0). Consequently, in every
of cases (iii), (iv) and (v), we have (C ∩ ϕ(A)) + ϕ(A0) = ϕ(A) because ϕ(A0)
is topologically maximal in ϕ(A). Further, in case (vi) holds, it is easy to see that
(C ∩ ϕ(A)) + ϕ(A0)/ϕ(A0) is a nonzero closed B-subbimodule of ϕ(A)/ϕ(A0). Since
ϕ(A)/ϕ(A0) is topologically simple, it follows that (C ∩ ϕ(A)) + ϕ(A0)/ϕ(A0) =
ϕ(A)/ϕ(A0), so again (C ∩ ϕ(A)) + ϕ(A0) = ϕ(A). We then have

ϕ(A)2 = ((C ∩ ϕ(A)) + ϕ(A0))ϕ(A) = (C ∩ ϕ(A))ϕ(A) ⊂ C ∩ ϕ(A).

Therefore either of equalities ϕ(A)2 = ϕ(A) or ϕ(A)2 = ϕ(A0) together with the
fact that (C ∩ ϕ(A)) + ϕ(A0) = ϕ(A) gives C ∩ ϕ(A) = ϕ(A), a contradiction.

Finally, if (vii) holds, then clearly C ∩ ϕ(A) is a B-subbimodule of ϕ(A), and
hence C ∩ ϕ(A) must coincide with either {0} or ϕ(A0).

Thus, in any of cases (i)-(vii), C∩ϕ(A) coincides with either {0} or ϕ(A0). Now,
since Cϕ(A) and ϕ(A)C are contained in C ∩ ϕ(A), we have C ⊂ annE

(

ϕ(A)
)

if
C ∩ϕ(A) = {0} and C ⊂ annE

(

ϕ(A)/ϕ(A0)
)

if C ∩ϕ(A) = ϕ(A0). It follows that if
C∩ϕ(A) = {0}, then C = {0} in any of cases (i)-(vii). Similarly, if C∩ϕ(A) = ϕ(A0),
then C = ϕ(A0) in any of cases (i)-(vii).
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