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1 Introduction and Problem Formulation

Consider a stochastic discrete system L with finite set of states

X = {x1, x2, . . . , xn}.

Assume that the dynamics of the system is modeled by a Markov process with given
stochastic matrix of probabilities transitions P = (pij)i,j=1,n where

n
∑

j=1

pi,j = 1, i = 1, n; 0 ≤ pi,j ≤ 1, i, j = 1, n.

The probability Pxi0
(x, t) of system’s passage from the state xi0 to an arbitrary state

x ∈ X by using t transitions is defined and calculated on the basis of the following
recursive formula [2]

Pxi0
(x, τ + 1) =

∑

y∈X

Pxi0
(y, τ)py,x, τ = 0, t − 1, (1)

where Pxi0
(xi0 , 0) = 1 and Pxi0

(x, 0) = 0, ∀x ∈ X \{xi0}. We call these probabilities

state-time probabilities of system L. Formula (1) can be represented in the matrix
form as follow

π(τ + 1) = π(τ)P, τ = 0, t − 1. (2)

Here π(τ) = (π1(τ), π2(τ), . . . , πn(τ)) is the vector, where an arbitrary component
i expresses the probability of the system L to reach the state xi from xi0 at the
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moment of time τ , i.e. πi(τ) = Pxi0
(xi, τ). At the starting moment of time τ = 0

the vector π(τ) is given and its components are defined as follows: πi0(0) = 1 and
πi(0) = 0 for arbitrary i 6= i0. It is easy to observe that if for given starting vector
π(0) we apply formula (2) for τ = 0, 1, 2, . . . , t − 1, then we obtain

π(t) = π(0)P t,

where P t = P ×P ×· · ·×P . So, an arbitrary element p
(t)
xi,xj of this matrix expresses

the probability of system L to reach the state xj from xi by using t units of times. It
is easy to see that for given starting representation of the vector π(0) the following
properties holds

n
∑

i=1

πi(τ) = 1, τ = 0, 1, 2, . . . . (3)

The correctness of this property can be easy proved using induction principle with
respect to τ . Indeed, for τ = 0 the equality (3) holds according to the definition.
If we assume that (3) holds for every τ ≤ t then we obtain the correctness of this
formula for τ = t + 1 as follows

n
∑

i=1

πi(t + 1) =

n
∑

i=1

n
∑

j=1

pxj ,xi
πj(t) =

n
∑

j=1

πj(t)

n
∑

i=1

pxj ,xi
=

n
∑

j=1

πj(t) = 1.

So, formula (3) holds. In order to analyze the asymptotic behavior of the state-time
probabilities of the system using formula (3) we will assume that there exists the
limit

lim
t→∞

P t = Q.

If this limit exists then there exists the following limit

π = lim
t→∞

π(t) = π(0) lim
t→∞

P t = π(0)Q,

where an arbitrary component πj of the vector π = (π1, π2, . . . , πn) expresses the
probability that the system L will occupy the state xj after a large number of
transitions when it starts transitions in the state xi0. The vector π will be called
the vector of limiting state probabilities. Based on the mentioned above property
we may conclude that

n
∑

j=1

πj = 1

for an arbitrary given starting vector π(0). This means that the matrix Q = (qx,y)
satisfies the condition

∑

y∈X

qx,y = 1, ∀x ∈ X,

where qx,y ≥ 0, ∀x, y ∈ X, i.e. Q = (qx,y) is a stochastic matrix. An arbitrary
element qx,y of this matrix expresses the probability that the system will occupy the
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state y after a large number of transitions if it starts transitions in the state x. The
matrix Q is called the matrix of limiting states probabilities of the Markov process.

An important class of discrete Markov process represents ergodic Markov chain.
For this class all rows of the matrix of limiting states probabilities Q are the same, i.e.
qx,y = qv,y, ∀x, y, v ∈ X. In this case the limiting state probabilities πj, j = 1, n,
does not depend on the state in which the system starts transitions. The vector π
of limiting state probabilities can be found by solving the system of linear equations







π = πP
n
∑

j=1
πj = 1. (4)

The first condition π = πP in this system is obtained from (2) when τ → ∞ and
the second one reflects the property that after a large number of transitions the
dynamical system will be in one of the states xj ∈ X. It is well known that for
ergodic Markov chains the system (4) has a unique solution [2, 4]. The necessary
and sufficient conditions for the ergodicity of Markov processes are given in [2, 4].
In general system (4) may have a unique solution also when the limit lim

t→∞
P t does

not exist. This case may correspond to periodic Markov process and a component
πj of vector π that satisfies (4) can be treated as the probability of the system L
to occupy the state xj at the random moment of times during a large number of
transitions. In the following we can see that the definition of the matrix of limiting-
state probabilities Q can be extended for an arbitrary Markov process, however in
the case when lim

t→∞
P t does not exist the elements of the matrix Q have another

interpretation.
In this paper we describe an approach for determining the matrix of limiting

state probabilities in Markov processes and propose a polynomial time algorithm
for calculating of this matrix. We show that the running time the algorithm is
O(n4), where n is the number of the states of the discrete system.

2 The main results

The aim of this section is to ground a polynomial time algorithm for determining
the limit matrix Q for an arbitrary discrete Markov process with given stochastic
matrix P . We describe such an algorithm which is based on the idea of z-transform
and classical numerical methods.

2.1 The Main Approach and the General Scheme of the Algorithm

Let C be the complex space and denote by M(C) the set of complex matrices
with n rows and n columns. We consider the function A : C → M(C), where

A(z) = I − zP, z ∈ C.

We denote the elements of the matrix A(z) by ai,j(z), i, j = 1, n, i.e.

ai,j(z) = δi,j − zpij ∈ C[z]
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where

δi,j =

{

1 if i = j
0 if i 6= j

i, j = 1, n.

It is evident that the determinant ∆(z) of the matrix A(z) is a polynomial of
degree less or equal to n, (deg(∆(z)) ≤ n, ∆(z) ∈ C[z]). Therefore if we denote
D = {z ∈ C | ∆P (z) 6= 0} then we obtain that |C\D| ≤ deg(∆(z)) ≤ n and for
an arbitrary z ∈ D there exists the inverse matrix of A(z). So, we can define the
function F : D → M(C) where

F (z) = (A(z))−1.

Then the elements Fi,j(z), i, j = 1, n of F (z) can be found as follows:

Fi,j(z) =
Mj,i(z)

∆(z)
, i, j = 1, n,

where
Mi,j(z) = (−1)i+jAi,j(z)

and Ai,j(z) is the determinant of the matrix obtained from A(z) by deleting the row
i and the column j, i, j = 1, n. Therefore

Mj,i(z) ∈ C[z], deg(Mj,i(z)) ≤ n − 1, i, j = 1, n.

Note that ∆(1) = 0 because for the matrix A(1) holds the property

n
∑

j=1

(δij − pij) =

n
∑

j=1

δij −

n
∑

j=1

pij = δii − 1 = 0, i = 1, n.

This means that 1 ∈ C\D and therefore ∆(z) can be factored by (z − 1). Taking
into account that Fi,j(z) is a rational fraction with the denominator ∆(z) we can
represent Fi,j(z) uniquely in the following form

Fi,j(z) = Bij(z) +
∑

y∈C\DP

m(y)
∑

k=1

αi,j,k(y)

(z − y)k
, i, j = 1, n, (5)

where m(z) is the order of the root z of the polynomial ∆(z), z ∈ C\D, and
αijk(y) ∈ C, ∀y ∈ C\D, k = 1,m(y), i, j = 1, n. In this representation of Fi,j(z)
the degree of the polynomial Bij(z) ∈ C[z] satisfies the condition

deg(Bi,j(z)) = deg(Mj,i(z)) − deg(∆(z)),

where deg(Mj,i(z)) ≥ deg(∆(z)), otherwise Bi,j(z) = 0.
To represent (5) in a more convenient form we shall use some elementary prop-

erties of the function νk(z) =
1

(1 − z)k
, k = 1, 2, . . .. It is well known that in



THE MATRIX OF LIMITING STATES PROBABILITIES 81

the case k = 1 the function ν1(z) admits the series expansion ν1(z) =
∞
∑

t=0
zt.

In general case (for an arbitrary k > 1) the following recursive relation holds

νk+1(z) =
dνk(z)

kdz
, k = 1, 2, . . .. Using these properties and induction principle we

can obtain the series expansion of the function νk(z), ∀k ≥ 1: νk(z) =
∞
∑

t=0
Tk−1(t)z

t,

where Tk−1(t) is a polynomial of degree less or equal to (k − 1).

Based on mentioned above properties we can make the following transformation
in (5) we can make the following transformation:

Fi,j(z) = Bi,j(z) +
∑

y∈C\D

m(y)
∑

k=1

(

−
1

y

)k

αi,j,k(y)

(

1 −
1

y
z

)k
=

= Bi,j(z) +
∑

y∈C\D

m(y)
∑

k=1

(

−
1

y

)k

αi,j,k(y)νk

(

z

y

)

=

= Bi,j(z) +
∑

y∈C\D

m(y)
∑

k=1

(

−
1

y

)k

αi,j,k(y)

∞
∑

t=0

Tk−1(t)

(

z

y

)t

=

= Bi,j(z) +

∞
∑

t=0

(

z

y

)t
∑

y∈C\D

m(y)−1
∑

k=0

(

−
1

y

)k+1

αi,j,k+1(y)Tk(t).

We can observe that in the relation above the expression

m(y)−1
∑

k=0

(

−
1

y

)k+1

αi,j,k+1(y)Tk(t)

represents a polynomial of degree less or equal to m(y) − 1 and we can write it in

the form
m(y)−1
∑

k=0

βi,j,k(y)tk, where βi,j,k represent the corresponding coefficients of this

m(y)−1
∑

k=0

βi,j,k(y)tk for polynomial. Therefore if in the expression above we substitute

m(y)−1
∑

k=0

(

−
1

y

)k+1

αi,j,k+1(y)Tk(t) then we obtain

Fi,j(z) = Bi,j(z) +
∞
∑

t=0

zt
∑

y∈C\D

m(y)−1
∑

k=0

tk

yt
βi,j,k(y) =
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= Wi,j(z) +

∞
∑

t=1+deg(Bi,j (z))

zt
∑

y∈C\D

m(y)−1
∑

k=0

tk

yt
βi,j,k(y), i, j = 1, n, (6)

where βi,j,k(y) ∈ C, ∀y ∈ C\D, k = 0,m(y) − 1, i, j = 1, n, and Wij(z) ∈ C[z]
is a polynomial of degree that satisfies the condition deg(Wi,j(z)) = deg(Bi,j(z)),
i, j = 1, n.

Note that for the norm of the matrix P we have ‖P‖ = max
i=1,n

n
∑

j=1
pi,j = 1, and

therefore ‖zP‖ = |z|‖P‖ = |z|. Let |z| < 1. Then for F (z) we have

F (z) = (I − zP )−1 =

∞
∑

t=0

P tzt.

This means that

Fi,j(z) =

∞
∑

t=0

pi,j(t)z
t, i, j = 1, n. (7)

From definition of z-transform and from (6) − (7) we obtain

pi,j(t) =
∑

y∈C\D

m(y)−1
∑

k=0

tk

yt
βi,j,k(y), ∀t > deg(Bi,j(z)), i, j = 1, n.

Since 0 ≤ pi,j(t) ≤ 1, i, j = 1, n, ∀t ≥ 0, we have

|y| ≥ 1, ∀y ∈ C\D, βi,j,k(1) = 0, ∀k ≥ 1.

This involves αi,j,k(1) = 0, ∀k ≥ 2.

Now let us assume that ∆(z) = (z − 1)m(1)T (z), T (1) 6= 0. Then the relation
(5) is represented as follows:

Fi,j(z) =
αi,j,1(1)

z − 1
+ Bi,j(z) +

∑

y∈(C\D)\{1}

m(y)
∑

k=1

αi,j,k(y)

(z − y)k
=

=
αi,j,1(1)

z − 1
+

Yi,j(z)

T (z)
, i, j = 1, n,

where Yi,j(z) ∈ C[z] and

deg(Yi,j(z)) = deg(Bi,j(z)) + deg(T (z)) = deg(Bi,j(z)) + deg(∆(z)) − m(1) =

= deg(Mj,i(z)) − m(1) ≤ n − 1 − m(1) ≤ n − 2, i, j = 1, n.
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In the following we will denote

Y (z) = (Yi,j(z))i,j=1,n, α1(1) = (αi,j,1(1))i,j=1,n.

Then the matrix F (z) can be represented as follows:

F (z) =
1

z − 1
α1(1) +

1

T (z)
Y (z). (8)

From this formula and from definition of the limiting-state matrix Q we have

Q = −α1(1), (9)

i.e Q in the inverse matrix of (I − zP ) corresponds to the term with the coefficient
1

1 − z
.

From (8) and (9) we obtain formula

Q = lim
z→1

(1 − z)(I − zP )−1.

In the following we show how to determine the polynomial ∆(z) and the function
F (z) in the matrix form.

2.2 Algorithm for Determining the Polynomial ∆(z)

Let us consider the characteristic polynomial

K(z) = |P − zI| =
n
∑

k=0

νkz
k.

In this polynomial the coefficient of the term with maximal degree of variable z is
νn = | − In| = (−1)n 6= 0. This means that deg(K(z)) = n and we can represent
K(z) in the form

K(z) = (−1)n(zn − α1z
n−1 − α2z

n−2 − . . . − αn).

If we denote α0 = −1, then it is easy to see that the coefficients νk can be represented
as follows:

νk = (−1)n+1αn−k, k = 0, n.

In [1, 5] it is shown that the coefficients αk can be calculated basing on Lever-
rier’s method using O(n3) elementary operations. This method can be applied for
determining the coefficients αk in the following way:

1) We determine the matrices

P (k) = (pi,j(k))i,j=1,n, k = 1, n,
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where P (k) = P × P × · · · × P ;

2) Then we determine the traces of these matrices:

sk = trP (k) =
n
∑

j=1

pj,j(k), k = 1, n;

3) Finally we calculate the coefficients

αk =
1

k



sk −

k−1
∑

j=1

αjsk−j



 , k = 1, n.

If the coefficients αk are known then we can determine the coefficients of the

polynomial ∆(z) =
n
∑

k=0

βkz
k. Indeed, if z ∈ C\{0} then

∆(z) = |I − zP | = (−z)n

∣

∣

∣

∣

∣

P −
1

z
I

∣

∣

∣

∣

∣

= (−1)nznK

(

1

z

)

=

= (−1)nzn

n
∑

k=0

νk

1

zk
= (−1)n

n
∑

k=0

νkz
n−k =

n
∑

k=0

(−1)nνn−kz
k =

=

n
∑

k=0

(−1)n(−1)n+1αkz
k =

n
∑

k=0

(−αk)z
k.

For z = 0 we have
∆(0) = |I| = 1 = −α0.

Therefore finally we obtain

∆(z) =

n
∑

k=0

(−αk)z
k, ∀z ∈ C.

This means βk = −αk, k = 0, n. So, the coefficients βk, k = 0, n, can be
calculated using a similar recursive formula

βk = −αk = −
1

k



sk −
k−1
∑

j=1

αjsk−j



 = −
1

k



sk +
k−1
∑

j=1

βjsk−j



 , k = 1, n,

β0 = −α0 = 1,

We can use the following algorithm for determining the coefficients βk.
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Algorithm 1.1: Determining the coefficients of the polynomial ∆(z)

1) Calculate the matrices P (k) = (pi,j(k))i,j=1,n, k = 1, n;

2) Determine the traces of the matrices P (k) :

sk = trP (k) =

n
∑

j=1

pj,j(k), k = 1, n;

3) Find the coefficients

β0 = 1, βk = −
1

k



sk +

k−1
∑

j=1

βjsk−j



 , k = 1, n.

2.3 Polynomial Time Algorithm for Determining the Function F (z)

Consider

T ′(z) = (z − 1)T (z)

and denote N = deg(T ′(z)) = n − (m(1) − 1). We have already shown that the
function F (z) can be represented in the following matrix form:

F (z) =
1

T ′(z)

N−1
∑

k=0

R(k)zk,

where

(z − 1)m(1)−1
N−1
∑

k=0

R
(k)
i,j zk = Mj,i, i, j = 1, n.

We will make some transformation using the identity I = (I − zP )(I − zP )−1. We
have

T ′(z)I = (I − zP )

N−1
∑

k=0

zkR(k) =

N−1
∑

k=0

zkR(k) −

N−1
∑

k=0

zk+1(PR(k)) =

= R(0) +
N−1
∑

k=1

zk(R(k) − PR(k−1)) − zN (PR(N−1)).

Let T ′(z) =
N
∑

k=0

β∗
kzk and substitute this expression in obtained above re-

lation. Then we obtain the following formula for determining the matrices
R(k), k = 0, N − 1:

R(0) = β∗
0I; R(k) = β∗

kI + PR(k−1), k = 1, N − 1. (10)
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So, we have

F (z) =

(

Vij(z)

T ′(z)

)

i,j=1,n

,

where

Vi,j(z) =

N−1
∑

k=0

R
(k)
ij zk, i, j = 1, n.

Based on these formula we can develop algorithm for determining the matrix Q.

2.4 Polynomial Time Algorithm for Determining the Matrix
of Limiting-State Probabilities Q

Consider

T (z) =

N−1
∑

k=0

γkz
k; Y (z) =

N−2
∑

k=0

y(k)zk; y∗ = α1(1).

Then according to relation (8) we obtain

Vi,j(z)

T ′(z)
= Fi,j(z) =

y∗i,j
z − 1

+

N−2
∑

k=0

y
(k)
ij zk

T (z)
, i, j = 1, n.

This involve

N−1
∑

k=0

R
(k)
i,j zk = Vi,j(z) = y∗i,jT (z) + (z − 1)

N−2
∑

k=0

y
(k)
i,j zk = y∗i,j

N−1
∑

k=0

γkz
k+

+

N−2
∑

k=0

y
(k)
i,j zk+1 −

N−2
∑

k=0

y
(k)
i,j zk =

N−1
∑

k=0

γky
∗
i,jz

k +

N−1
∑

k=1

y
(k−1)
i,j zk −

N−2
∑

k=0

y
(k)
i,j zk =

= (γ0y
∗
i,j −y

(0)
i,j )+

N−2
∑

k=1

(γky
∗
i,j +y

(k−1)
i,j −y

(k)
i,j )zk +(γN−1y

∗
i,j +y

(N−2)
i,j )zN−1, i, j = 1, n.

If we equate the corresponding coefficients of the variable z with the same expo-
nents then we obtain the following system of linear equations:



























R
(0)
i,j = γ0y

∗
i,j − y

(0)
i,j ,

R
(k)
i,j = γky

∗
i,j + y

(k−1)
i,j − y

(k)
i,j , k = 1, N − 2,

R
(N−1)
i,j = γN−1y

∗
i,j + y

(N−2)
i,j ,

i, j = 1, n.
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This system is equivalent to the following system:



























y
(0)
i,j = γ0y

∗
i,j − R

(0)
i,j ,

y
(k)
ij = γky

∗
i,j + y

(k−1)
i,j − R

(k)
i,j , k = 1, N − 2,

y
(N−2)
i,j = −γN−1y

∗
i,j + R

(N−1)
i,j .

i, j = 1, n.

Here we can see that there exist the coefficients u
(k)
i,j , v

(k)
i,j ∈ C, k = 0, N − 2, i, j = 1, n,

such that
y

(k)
i,j = u

(k)
i,j y∗i,j + v

(k)
i,j , k = 0, N − 2, i, j = 1, n.

From the first equation we obtain

u
(0)
i,j = γ0, v

(0)
i,j = −R

(0)
i,j , i, j = 1, n.

From the next N − 2 equations we obtain

y
(k)
i,j = γky

∗
i,j + y

(k−1)
i,j − R

(k)
i,j = γky

∗
i,j + u

(k−1)
i,j y∗i,j + v

(k−1)
i,j − R

(k)
i,j =

= (γk + u
(k−1)
i,j )y∗i,j + (v

(k−1)
i,j − R

(k)
ij ), k = 1, N − 2, i, j = 1, n,

which involve the recursive equations

u
(k)
i,j = u

(k−1)
i,j + γk, v

(k)
ij = v

(k−1)
i,j − R

(k)
i,j , k = 1, N − 2, i, j = 1, n.

In a such way we obtain the direct formula for calculation of the coefficients:

u
(k)
i,j =

k
∑

r=0

γr, v
(k)
i,j = −

k
∑

r=0

R
(r)
i,j , k = 0, N − 2, i, j = 1, n.

If we introduce these coefficients in the last equation of the system then we obtain

u
(N−2)
i,j y∗ij + v

(N−2)
i,j = −γN−1y

∗
ij + R

(N−1)
i,j , i, j = 1, n ⇔

⇔ y∗i,j

N−1
∑

r=0

γr =

N−1
∑

r=0

R
(r)
i,j , i, j = 1, n ⇔

⇔ y∗i,j =

N−1
∑

r=0
R

(r)
i,j

N−1
∑

r=0
γr

=
Ri,j

T (1)
, i, j = 1, n,

where Rij =
N−1
∑

r=0
R

(r)
i,j , i, j = 1, n. Finally, if we denote R = (Rij)i,j=1,n then

Q = −
1

T (1)
R. (11)
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Based on result described above we can describe the algorithm for determining the
matrix Q.

Algorithm 1.2: Determining the Limiting-State Matrix Q

1) Find the coefficients of the polynomial ∆(z) =
n
∑

k=0

βkz
k using Algorithm 1.1;

2) Divide m(1) times the polynomial ∆(z) by z − 1, using Horner scheme and
find the polynomial T (z) that satisfies the condition T (1) 6= 0. At the same time
we preserve the coefficients β∗

k , k = 0, N , of the polynomial T ′(z) = (z − 1)T (z)
obtained at the previous step of the Horner’s scheme;

3) Determine T (1) according to the rule described above;

4) Find the matrices R(k), k = 0, N − 1, according to (10);

5) Find the matrix R =
N−1
∑

k=0

R(k);

6) Calculate the matrix Q according to formula (11);

It is easy to check that the running time of Algorithm 1.2 is O(|X|4). Indeed,
step 1) and step 4) of the algorithm use O(|X|4) elementary operations and each
of remainder steps 2) - 3) and 5) - 6) use in the worst case O(|X|3) elementary
operations.

3 Numerical examples

In this section we give some numerical examples which illustrate the main details
of the algorithms from previous section.

Example 1. Consider the discrete Markov process with the stochastic matrix

of probability transactions P =

(

0 1
1 0

)

. We can see that Pn) =

(

1 0
0 1

)

,

P 2n+1 =

(

0 1
1 0

)

, ∀n ≥ 0, i.e. the Markov chain is 2-periodic.

So, in this case the limit lim
n→∞

Pn does not exist, but there exists the matrix Q

which can be found by using algorithm described above. If we apply this algorithm
then we obtain:

1) P =

(

0 1
1 0

)

, P 2 =

(

1 0
0 1

)

; s1 = trP = 0, s2 = trP 2 = 2;

β0 = 1, β1 = −s1 = 0, β2 = −
1

2
(s2 + β1s1) = −1;

2) We divide the polynomial β2z
2 + β1z + β0 by z − 1 using Horner’s scheme

-1 0 1

1 -1 -1 0

1 -1 -2
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and obtain m(1) = 1, N = 2; β∗
0 = 1, β∗

1 = 0, β∗
2 = −1; γ0 = −1, γ1 = −1;

3) T (1) = γ0 + γ1 = −2;

4) R(0) = β∗
0I =

(

1 0
0 1

)

, R(1) = β∗
1I + PR(0) =

(

0 1
1 0

)

;

5) R = R(0) + R(1) =

(

1 0
0 1

)

+

(

0 1
1 0

)

=

(

1 1
1 1

)

;

6) Q = −
1

T (1)
R =

1

2

(

1 1
1 1

)

=

(

0.5 0.5
0.5 0.5

)

.

In such a way we obtain the limit matrix Q =

(

0.5 0.5
0.5 0.5

)

, however the

considered process is not ergodic because the matrix P (n) contains zero elements
∀n ≥ 0. The rows of this matrix are the same and the vector of limiting
probabilities π∗ = (0.5, 0.5) can be found also by solving the system of linear
equation (4).

Example 2. Consider the Markov process with the stochastic matrix

P =

(

0.5 0.5
0.4 0.6

)

. We can see that in this case the Markov process is ergodic.

We can find the matrix Q using our algorithm:

P =

(

0.5 0.5
0.4 0.6

)

, P 2 =

(

0.45 0.55
0.44 0.56

)

;

s1 = trP = 0.5 + 0.6 = 1.1, s2 = trP 2 = 0.45 + 0.56 = 1.01;

β0 = 1, β1 = −s1 = −1.1, β2 = −
1

2
(s2 + β1s1) = −

1

2
(1.01 − 1.1 · 1.1) = 0.1;

0.1 -1.1 1

1 0.1 -1 0

1 0.1 -0.9

β∗
0 = 1, β∗

1 = −1.1, β∗
2 = 0.1; γ0 = −1, γ1 = 0.1; T (1) = γ0 + γ1 = −0.9;

R(0) = β∗
0I =

(

1 0
0 1

)

, R(1) = β∗
1I + PR(0) =

(

−0.6 0.5
0.4 −0.5

)

;

R = R(0) + R(1) =

(

0.4 0.5
0.4 0.5

)

; Q = −
1

T (1)
R =

1

9

(

4 5
4 5

)

.

We have Q =

(

4/9 5/9
4/9 5/9

)

. The rows of this matrix are the same and all

elements of the matrix P (n) are non zero when t → ∞. So, this is ergodoc Markov

process with the vector of limiting probabilities π∗
1 =

4

9
. As we have shown this

vector can be found by solving system (4).
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Example 3. We consider a non ergodic Markov process with the stochastic matrix
of probabilities transactions

P =





1 0 0
0 1 0

1/3 1/3 1/3



 .

In this case the solution of the system of linear equations (4) is not unique. If we
apply the proposed algorithm we can determine the matrix Q. According to this
algorithm we obtain:

P =









1 0 0
0 1 0
1

3

1

3

1

3









, P 2 =









1 0 0
0 1 0
4

9

4

9

1

9









, P 3 =









1 0 0
0 1 0
13

27

13

27

1

27









;

s1 = trP = 7/3, s2 = trP 2 = 19/9, s3 = trP 3 = 55/27; β0 = 1,

β1 = −s1 = −7/3, β2 = −(s2 +β1s1)/2 = 5/3, β3 = −(s3 +β1s2 +β2s1)/3 = −1/3;

-1/3 5/3 -7/3 1

1 -1/3 4/3 -1 0

1 -1/3 1 0

1 -1/3 2/3

β∗
0 = −1, β∗

1 = 4/3, β∗
2 = −1/3; γ0 = 1, γ1 = −1/3; T (1) = γ0 + γ1 = 2/3;

R(0) = β∗
0I =





−1 0 0
0 −1 0
0 0 −1



 , R(1) = β∗
1I + PR(0) =





1/3 0 0
0 1/3 0

−1/3 −1/3 1



 ;

R = R(0) + R(1) =





−2/3 0 0
0 −2/3 0

−1/3 −1/3 0



 ; Q = −
1

T (1)
R =





1 0 0
0 1 0

1/2 1/2 0



 .

So, finally we have

Q =





1 0 0
0 1 0

1/2 1/2 0



 .

In this case all rows of the matrix Q are different. It is easy to observe that for the
considered example there exits lim

n→∞
P (n) = Q.
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