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Continuity of the norm of a composition operator

between weighted Banach spaces of holomorphic

functions

Elke Wolf

Abstract. We consider composition operators Cφ between given weighted Banach
spaces of analytic functions defined on the open unit disk and explore the continuity of
the map, which given an analytic self-map of the disk, takes as its value the associated
composition operator resp. the norm of this operator.
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1 Introduction

Let v and w be strictly positive bounded continuous functions (weights) on the
open unit disk D in the complex plane. Define the weighted space

H∞
v := {f ∈ H(D); ‖f‖v = sup

z∈D
v(z)|f(z)| <∞},

where H(D) denotes the space of all analytic functions which is usually endowed
with the compact-open topology co. Endowed with the weighted sup-norm ‖.‖v ,
H∞
v becomes a Banach space (for further information on these spaces see e.g.[1]).

Spaces of this type appear in the study of growth conditions of analytic functions
and have been investigated in various articles, see e. g.[1–3,10,14,16,17,19,22–24].

Let φ be an analytic self-map of D. The equation Cφf = f ◦φ defines a composi-
tion operator on H(D). We are interested in composition operators acting between
weighted Banach spaces of holomorphic functions as defined above.

Composition operators and differences of composition operators have recently
been of much interest and have been studied on various spaces of analytic functions,
see e. g.[4–8,13,18,21].

Next, let C be the set of all composition operators endowed with the usual norm.
Moreover, let ASM(D) be the set of all analytic self-maps of D and ϕz be the
Möbius transformation of D which interchanges z and the origin, namely,

ϕz(w) =
z − w

1 − zw
, w ∈ D.
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Then the pseudohyperbolic distance ρ(z,w) for z,w ∈ D is defined as

ρ(z,w) = |ϕz(w)| =

∣

∣

∣

∣

z − w

1 − zw

∣

∣

∣

∣

.

Next, on ASM(D) we want to introduce the following metric

d(φ,ψ) := sup
z∈D

ρ(φ(z), ψ(z)) for every φ,ψ ∈ ASM(D).

Recall ‖φ‖∞ = supz∈D |φ(z)| for every φ ∈ ASM(D). Considering the maps

N∞ : (ASM(D), ‖.‖∞) → R, φ→ ‖Cφ‖

Nd : (ASM(D), d) → R, φ→ ‖Cφ‖

as well as

K∞ : (ASM(D), ‖.‖∞ → C, φ→ Cφ

Kd : (ASM(D), d) → C, φ→ Cφ,

we pose the following question:

For which functions φ ∈ ASM(D) is N∞ or Nd or K∞ or Kd continuous?

2 Notations and definitions

For notation on composition operators and spaces of analytic functions we refer
the reader to [8, 11, 12, 21]. An important tool in the theory of weighted spaces is
the so-called associated weight (see [3]) defined by

ṽ(z) :=
1

sup{|f(z)|; f ∈ H∞
v , ‖f‖v ≤ 1}

, z ∈ D.

By [3] the associated weight has the following properties:

(i) ṽ is continuous,

(ii) ṽ ≥ v > 0,

(iii) for each z ∈ D there is fz ∈ H∞
v , ||fz||v ≤ 1, such that |fz(z)| =

1

ṽ(z)
.

In general it is not so easy to compute the associated weight. Thus, an important
class of weights is the class of essential weights, that is, the weights such that there
is a constant C > 0 with

v(z) ≤ ṽ(z) ≤ Cv(z) for every z ∈ D.

For examples of essential weights and conditions when weights are essential see
[3, 5] and [4]. Especially interesting are radial weights v, i.e. weights which satisfy
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v(z) = v(|z|) for every z ∈ D. Every radial weight which is non-increasing with
respect to |z| and such that lim|z|→1 v(z) = 0 is called a typical weight. In the sequel
every radial weight is assumed to be non-increasing.

We say that a radial weight v has condition (L1) (which is due to Lusky, see [16])
if for every z ∈ D the following holds:

(L1) inf
k

v(1 − 2−k−1)

v(1 − 2−k)
> 0.

Note, that each radial weight satisfying (L1) is essential (see [9] Proposition 2(b)).
Lusky showed (see [16]) that each of the following weights satisfies condition (L1)

v(z) = (1 − |z|)p, 0 < p <∞,

v(z) = (1 − log(1 − |z|))−β , β > 0,

v(z) = (1 − |z|)p(1 − log(1 − |z|))−β , 0 < p <∞ and β > 0.

If v is a radial weight on D which is continuously differentiable with respect to |z|,
then by [9] we know that condition (L1) is equivalent to each of the following two
conditions:

(A) there are 0 < r < 1 and 1 < C < ∞ with
v(z)

v(p)
≤ C for every z, p ∈ D with

ρ(z, p) ≤ r,

(U) there exists α > 0 such that
v(z)

(1 − |z|)α
is increasing near the boundary of D.

Next, let us list up some auxiliary results which are essential for the proofs of
this article’s results.

Theorem 1. ([5] Proposition 2.1) Let v and w be weights. Then Cφ : H∞
v → H∞

w

is continuous (or, equivalently, bounded) if and only if supz∈D
w(z)

ṽ(φ(z))
<∞.

Thus, the norm ‖Cφ‖ may be identified with supz∈D
w(z)

ṽ(φ(z))
.

Theorem 2. ([7] Proposition 2) Let v and w be weights such that v is radial and
satisfies (L1). Then Cφ−Cψ : H∞

v → H∞
w is continuous (or, equivalently, bounded)

if and only if

sup
z∈D

w(z)ρ(φ(z), ψ(z))max

{

1

ṽ(φ(z))
,

1

ṽ(ψ(z))

}

<∞.

Thus, the norm ‖Cφ − Cψ‖ can be identified with the expression

sup
z∈D

w(z)ρ(φ(z), ψ(z))max

{

1

ṽ(φ(z))
,

1

ṽ(ψ(z))

}

.
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Lemma 1. ([15] Lemma 1) Let v be a radial weight on D satisfying the Lusky
condition (L1) such that v is continuously differentiable with respect to |z|. There is
a constant M <∞ such that if f ∈ H∞

v , then

|v(p)f(p) − v(q)f(q)| ≤M‖f‖vρ(p, q)

for all p, q ∈ D.

The following lemma is taken from [15] and can be found there as Lemma 2. For
the sake of completeness as well as for a better understanding of this note we want
to repeat the proof given in [15].

Lemma 2. ([15] Lemma 2) Let v be a radial weight on D satisfying the Lusky
condition (L1) such that v is continuously differentiable with respect to |z|. Then
v(p)

v(z)
→ 1 when ρ(z, p) → 0.

Proof. Since condition (A) holds, Lemma 14 in [9] gives that there exist 1 < C <∞
and 0 < s < 1 such that

|v(p)f(z) − v(p)f(p)| ≤
4C

s
‖f‖vρ(p, z)

for all f ∈ H∞
v and all p, z ∈ D with ρ(p, z) <

s

2
. Combining this inequality with

Lemma 1, we obtain that

|v(p)f(z) − v(z)f(z)| ≤ |v(p)f(z) − v(p)f(p)| + |v(p)f(p) − v(z)f(z)|

≤

(

4C

s
+M

)

‖f‖vρ(p, z)

for all f ∈ H∞
v and all p, z ∈ D with ρ(p, z) <

s

2
. The Lusky condition (L1) implies

condition (U), so by Proposition 3.4 in [3], there is a constant C1 > 0 such that
v(z) ≤ ṽ(z) ≤ C1v(z) for all z ∈ D. Moreover, for each z ∈ D we can find fz ∈ H∞

v ,

‖fz‖v ≤ 1 such that fz(z) =
1

ṽ(z)
. Hence

∣

∣

∣

∣

v(p)

v(z)
− 1

∣

∣

∣

∣

≤ C1

∣

∣

∣

∣

v(p) − v(z)

ṽ(z)

∣

∣

∣

∣

= C1|v(p)fz(z) − v(z)fz(z)| ≤ C2ρ(p, z) → 0

when ρ(p, z) → 0.

3 Results

Theorem 3. Let v and w be weights such that v is radial and satisfies condition
(L1). If Kd is continuous at φ, i.e.

d(φ, φn) → 0 =⇒ ‖Cφn
− Cφ‖ → 0, (1)

then Cφ is continuous. If we assume additionally that v is continuously differentiable
with respect to |z|, then the converse is also true.
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Proof. First, we suppose that Kd is continuous at φ. By Theorem 2, (1) is equivalent
with

d(φ, φn) → 0 =⇒ sup
z∈D

w(z)ρ(φ(z), φn(z))max

{

1

ṽ(φ(z))
,

1

ṽ(φn(z))

}

→ 0.

We prove the assertion indirectly, i.e. we assume that Cφ is not continuous.
By Theorem 1, there is a sequence (zn)n ⊂ D, |φ(zn)| → 1, such that

w(zn)

ṽ(φ(zn))
≥ n for every n ∈ N. Next, we choose φn(z) :=

φ(z) − 1

n

1 − 1

n
φ(z)

for every n ∈ N.

Each φn is an element of ASM(D) since |φn(z)| ≤
|φ(z)| − 1

n

1 − 1

n
|φ(z)|

<
1 − 1

n

1 − 1

n

= 1 for

every z ∈ D. We have

ρ(φ(z), φn(z)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ(z) −
φ(z) −

1

n

1 −
1

n
φ(z)

1 − φ(z)
φ(z) −

1

n

1 −
1

n
φ(z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

φ(z) −
1

n
|φ(z)|2 − φ(z) +

1

n

1 −
1

n
φ(z) − |φ(z)|2 +

1

n
φ(z)

∣

∣

∣

∣

∣

∣

∣

=
1

n

for every z ∈ D. Hence supz∈D ρ(φ(z), φn(z)) = 1

n
→ 0 if n→ ∞. Then we obtain

w(zn)

ṽ(φ(zn))
ρ(φ(zn), φn(zn)) ≥

n

n
= 1.

This is a contradiction.

In order to show the converse we assume additionally that v is continuously differ-
entiable with respect to |z|. Let us assume that d(φ, φn) = supz∈D ρ(φ(z), φn(z)) →
0 if n → ∞. Hence, for every z ∈ D, ρ(φ(z), φn(z)) → 0 if n → ∞.

By Lemma 2,
v(φ(z))

v(φn(z))
→ 1 for every z ∈ D if n → ∞. Thus, there is

n0 ∈ N such that Cφn
is continuous for every n ≥ n0, i.e. we can find M > 0

with supz∈D w(z)max

{

1

ṽ(φ(z))
,

1

ṽ(φn(z))

}

≤ M for every n ≥ n0. Now, since

supz∈D ρ(φ(z), φn(z)) → 0 if n→ ∞, an application of Theorem 2 yields

‖Cφ − Cφn
‖ = sup

z∈D
w(z)max

{

1

ṽ(φ(z))
,

1

ṽ(φn(z))

}

ρ(φ(z), φn(z)) → 0,

and the claim follows.

The following proposition follows directly from Theorem 3 but we want to give
a direct proof at this point.
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Proposition 1. Let v and w be weights such that v is radial and satisfies condition
(L1). If K∞ is continuous at φ, i.e.

‖φn − φ‖∞ → 0 =⇒ ‖Cφn
− Cφ‖ → 0, (2)

then Cφ is continuous.

Proof. By Theorem 2, (2) is equivalent with

‖φn − φ‖∞ → 0 =⇒ sup
z∈D

w(z)ρ(φ(z), φn(z))max

{

1

ṽ(φn(z))
,

1

ṽ(φ(z))

}

→ 0.

We prove the proposition indirectly, i.e. we assume that Cφ is not continuous. By

Theorem 1, we can find a sequence (zn)n ⊂ D, |φ(zn)| → 1, such that
w(zn)

ṽ(φ(zn))
≥ n

for every n ∈ N. W.l.o.g. we may assume that |φ(zn)|
2 ≥

(

1 −
1

n

)

. Next, we choose

φn(z) :=

(

1 −
1

n

)

φ(z). Obviously we have ‖φn − φ‖∞ → 0. Then we obtain

w(zn)

ṽ(φ(zn))
ρ(φ(zn), φn(zn)) =

w(zn)

ṽ(φ(zn))

1

n

|φ(zn)|

1 −

(

1 −
1

n

)

|φ(zn)|2

≥
w(zn)

ṽ(φ(zn))

1

n

|φ(zn)|
2

1 −

(

1 −
1

n

)

|φ(zn)|2

≥ n
1

n

1 −
1

n

1 −

(

1 −
2

n
+

1

n2

) ≥
n− 1

n

n2

2n− 1

≥ (n− 1)
n

2n − 1
.

This is a contradiction.

The other assertion of Theorem 3 does not remain true if we consider K∞ instead
of Kd as the following example shows.

Example 1. Choose w(z) = 1, v(z) = 1 = ṽ(z), z ∈ D, as well as φ(z) =
z + 1

2
,

φn(z) =

(

1 −
1

n

)

z + 1

2
, z ∈ D, n ∈ N. We obviously have

‖Cφ‖ = sup
z∈D

w(z)

ṽ(φ(z))
= 1 = sup

z∈D

w(z)

ṽ(φn(z))
= ‖Cφn

‖

for every n ∈ N and

‖φ− φn‖∞ =
1

n
sup
z∈D

∣

∣

∣

∣

z + 1

2

∣

∣

∣

∣

≤
1

n
→ 0
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if n→ ∞, but

sup
z∈D

ρ(φ(z), φn(z)) = sup
z∈D

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n

z + 1

2

1 −

(

1 −
1

n

) ∣

∣

∣

∣

z + 1

2

∣

∣

∣

∣

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

1

n
1

n

= 1 6→ 0

if n→ ∞. Hence by Theorem 1 Cφ and each Cφn
are continuous, but

‖Cφ − Cφn
‖ = sup

z∈D
w(z)ρ(φ(z), φn(z))max

{

1

ṽ(φ(z))
,

1

ṽ(φn(z))

}

= sup
z∈D

ρ(φ(z), φn(z)) = 1 6→ 0.

Proposition 2. Let w be a weight and v be a radial weight satisfying the condition
(L1) such that v is continuously differentiable with respect to |z|. If K∞ resp. Kd is
continuous at φ, then N∞ resp. Nd is continuous at φ.

Proof. By the proof of Lemma 2 we can find a constant C > 0 such that

|‖Cφn
‖ − ‖Cφ‖| =

∣

∣

∣

∣

sup
z∈D

w(z)

ṽ(φn(z))
− sup
z∈D

w(z)

ṽ(φ(z))

∣

∣

∣

∣

≤ sup
z∈D

w(z)

∣

∣

∣

∣

1

ṽ(φn(z))
−

1

ṽ(φ(z))

∣

∣

∣

∣

≤ sup
z∈D

w(z)

ṽ(φ(z))

∣

∣

∣

∣

ṽ(φ(z))

ṽ(φn(z))
− 1

∣

∣

∣

∣

≤ C sup
z∈D

w(z)

ṽ(φ(z))
ρ(φ(z), φn(z))

≤ ‖Cφ − Cφn
‖,

and the claim follows.

Remark 1. (i) The continuity of N∞ at φ does not imply the continuity of K∞

at φ as Example 1 shows.

(ii) Let w be a weight and v be a radial weight satisfying the condition (L1) such
that v is continuously differentiable with respect to |z|. If N∞ is continuous
at φ, then Cφ is continuous.

The converse of (ii) in the remark above is not true as the following example
shows.

Example 2. Choose v(z) = 1 − |z| = ṽ(z), w(z) = |1 − z|, z ∈ D, as well as

φ(z) =
z + 1

2
and φn(z) =

z + ξn

2
, n ∈ N, z ∈ D, where (ξn)n∈N ⊂ ∂D is a

sequence going to 1. Then, for each n ∈ N we obtain

‖Cφn
‖ = sup

z∈D

w(z)

ṽ(φn(z))
= sup

z∈D

|1 − z|

1 −

∣

∣

∣

∣

z + ξn

2

∣

∣

∣

∣

= ∞,
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but

‖Cφ‖ = sup
z∈D

|1 − z|

1 −

∣

∣

∣

∣

z + 1

2

∣

∣

∣

∣

<∞.

Hence ‖φ− φn‖∞ → 0, but ‖Cφn
‖ 6→ ‖Cφ‖.

Remark 2. Let v be a radial weight on D satisfying the Lusky condition (L1) such
that v is continuously differentiable with respect to |z|. Then Lemma 2 yields that
Nd is always continuous.
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