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A numerical approximation of the free-surface heavy

inviscid flow past a body

Luminita Grecu, Titus Petrila

Abstract. The object of this paper is to apply the Complex Variable Boundary
Element Method (CVBEM) for solving the problem of the bidimensional heavy fluid
flow over an immersed obstacle, of smooth boundary, situated near the free surface
in order to obtain the perturbation produced by its presence and the fluid action on
it. Using the complex variable, complex perturbation potential, complex perturbation
velocity and the Cauchy’s formula the problem is reduced to an integro-differential
equation with boundary conditions. For solving the integro-differential equation a
complex variable boundary elements method with linear elements is developed. We
use linear boundary elements for discretize smooth curve, and free surface, in fact
we approximate them with polygonal lines formed by segments, and we choose for
approximating the unknown on each element a linear model that uses the nodal values
of the unknown. Finite difference schemes are used for eliminating the derivatives that
appear. The problem is finally reduced to a system of linear equations in terms of
nodal values of the components of the velocity field. All coefficients in the mentioned
system are analytically calculated. Those arising from singular integrals are evaluated
using generalized Cauchy integrals. After solving the system we obtain the velocity
and further the local pressure coefficient and the fluid action over the obstacle can
be deduced. For evaluating the coefficients and for solving the system to which the
problem is reduced, we can use a computer code.

Mathematics subject classification: 74S15.
Keywords and phrases: Boundary integro-differential equation, linear boundary
element, boundary element method.

1 Introduction

Let us consider a uniform steady potential plane free surface flow of a heavy
inviscid fluid past an arbitrary wing (obstacle) immersed in the immediate proximity
of the free surface. Assuming that the boundary Γof the wing is smooth enough to
avoid the existence of some angular points (and implicitly of a Kutta type condition),
we intend to set up a numerical procedure-backed by a CVBEM, for determining the
perturbation induced by the presence of the obstacle (wing) and the action exerted
by the fluid on this obstacle. The objective is to find the fluid velocity field and
the local pressure coefficient. Using a CVBEM with linear boundary elements the
problem is finally reduced to a system of linear equations. This problem is solved
in [2] using Schwarz principle, without a free-surface discretization, and in paper [1]
by means of linear boundary elements, but for obtaining the system’s coefficients, a
theorem which makes connection between the analytic function ω (z), defined by the
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contour integral ω (z) =

∫

Γ

h (ζ)

ζ − z
dζ, and ω′ (z) is used. In the herein paper other

techniques are used for evaluating system’s coefficients. For a better understanding,
a short presentation of the problem is considered necessary, and it is made according
to [2].

By splitting the velocity potential Φ into the unperturbed (uniform) stream po-
tential and the perturbation (due to the obstacle) potential, and using dimensionless
variables we have Φ (x, y) = x+ϕ (x, y), where ϕ (x, y) is the perturbation potential
which satisfies the Laplace equation ∆ϕ (x, y) = 0, x ∈ (−∞,+∞) , y ∈ (−∞, 0).

Assuming, at the beginning that the free surface can be approximated by the real
axis Ox, by linearizing the Bernoulli’s integral, the following boundary condition on
free surface holds:

∂2ϕ

∂x2
+ k0

∂ϕ

∂y
= 0, x ∈ (−∞,+∞) , y = 0, (x, y) /∈ Γ, (1)

where k0 =
1

Fr2
, F r =

U√
gL

, L and U being the characteristic length and velocity.

On the surface of the immersed wing the slip condition becomes

∂ϕ

∂n
|Γ= −nx (2)

where n (nx, ny) is the outward unit normal drawn on Γ while, on far field,
lim

x→∞
ϕ (x, y) = 0.

By introducing the stream (perturbation) function ψ (x, y), and by using the
complex variable z = x + iy and the complex (perturbation) velocity, w = u − iv,

(u =
∂ϕ

∂x
, v =

∂ϕ

∂y
), the complex (perturbation) potential f (z) = ϕ (x, y)+ iψ (x, y)

satisfies relations:

df

dz
=
∂ϕ

∂x
+ i

∂ψ

∂x
= w, Re

d2f

dz2
=
∂2ϕ

∂x2
, Im

df

dz
= −∂ϕ

∂y
.

Hence the previous conditions (1) and (2) become

Im

(
i
d2f

dz2
− k0

df

dz

)
= 0, for z = x ∈ R (y = 0) ;

Re

(
df

dz
(nx + iny)

)
= −nx, on Γ (3)

By introducing the holomorphic (in the flow domain) function F , defined by:

F (z) = i
d2f

dz2
− k0

df

dz
= i

dw

dz
− k0w (4)

we get:
ImF (z) = 0, for z = x ∈ R. (5)
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2 The Boundary Integro-Differential Equation

As lim
|z|→∞

F (z) = 0, the use of the Cauchy’s formula for the whole domain (the

lower half plane without the obstacle domain) allows us to write

1

2πi

+∞∫

−∞

F (ς)

ς − z
dς = F (z) − 1

2πi

∫

Γ

F (ς)

ς − z
dς (6)

Replacing the expression of F from (4) in the above relation and using (5) we
can write:

1

2π

+∞∫

−∞

Re (F (ς))

ς − z
dς = −dw (z)

dz
− ik0w (z) +

1

2πi

∫

Γ

(
k0i

w (ς)

ς − z
+

w (ς)

(ς − z)2

)
dς (7)

3 The Discrete Equation

For solving the integro-differential equation (7) a complex variable boundary

elements method with linear elements will be developed. As regards the term
dw (z)

dz
an appropriate finite difference scheme will be used. Following the same steps as
in [2], the border Γ is discretized by choosing a set of control points of affixes zi,
i = 1, N . Consequently the smooth curve Γ is approximated by a polygonal line
made by segments Lj, j = 1, N , whose edges have the affixes zj , zj+1, j = 1, N,
zN+1 = z1. Using linear boundary elements (Lj) and a linear approximation for
w (z) of the type (see [3])

w̃ (ς) = w (zj)
ς − zj+1

zj − zj+1

+ w (zj+1)
zj − ς

zj − zj+1

, j = 1, N (8)

(precisely all the elements with index N + 1 are seen as having the index 1), by
denoting w (zi) = wi and by introducing the additional denotations

aj (z) =

∫

Lj

ς − zj+1

(zj − zj+1) (ς − z)2
dς; bj+1 (z) =

∫

Lj

zj − ς

(zj − zj+1) (ς − z)2
dς (9)

cj (z) =

∫

Lj

k0i (ς − zj+1)

(zj − zj+1) (ς − z)
dς; dj+1 (z) =

∫

Lj

k0i (zj − ς)

(zj − zj+1) (ς − z)
dς,

mj = aj + cj , nj+1 = bj+1 + dj+1, Aj = mj + nj, j = 1, N (10)

equation (7) gets the form:
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1

2π

+∞∫

−∞

Re (F (ς))

ς − z
dς +

dw (z)

dz
+ ik0w (z) =

1

2πi

N∑

j=1

wjAj (11)

The involved integrals may be analytically evaluated, and so the above unknowns
coefficients. Making the effective calculations and considering that z0 = zN , we get
for j = 1, N the following expression for them:

Aj =

[
1 + ik0 (z − zj+1)

zj − zj+1

]
ln

(
zj+1 − z

zj − z

)
+

[−1 + ik0 (zj−1 − z)

zj−1 − zj

]
ln

(
zj − z

zj−1 − z

)

(12)
Now if we let z → zi ∈ Γ , i = 1, N , backed on the results of [4], we obtain:

1

2π

+∞∫

−∞

Re (F (ς))

ς − zi
dς +

dw (zi)

dz
+ ik0w (zi) =

1

2πi

N∑

j=1

wjAij (13)

The two indexes point out that the limits of coefficients (11), when z → zi ∈ Γ, are
considered.

Concerning the coefficients from (11), their calculation is performed by imposing
effectively z → zi ∈ Γ in the previous expressions of Aj ,so in (12). Except the
elements originated from the integrals calculated on segments Γi−1and Γi, which
become singular, this implies a simple replacement of z with zi. With regard to the
coefficients coming from the singular integral, we shall use some results obtained in
[5] for the evaluation of a principal value (in the Cauchy sense) of a singular integral

of the type
∫
Γ

f (ξ)

(ξ − z)2
dξ (Γ being a closed segmentary smooth curve) and the

equality lim
z→zi

(z − zi) log (z − zi) = 0 (see [6]). We get the following expressions:

Aij =

[
1 + ik0 (zi − zj+1)

zj − zj+1

]
ln

(
zj+1 − zi
zj − zi

)
+

[−1 + ik0 (zj−1 − zi)

zj−1 − zj

]
ln

(
zj − zi
zj−1 − zi

)
,

j 6= i− 1, i, i + 1,

Aii = ik0 ln

(
zi+1 − zi
zi−1 − zi

)
+

1 + ln |zi−1 − zi|
zi−1 − zi

+
−1 + ln |zi+1 − zi|

zi − zi+1

,

Aii−1 =

[−1 + ik0 (zi−2 − zi)

zi−2 − zi−1

]
ln

(
zi−1 − zi
zi−2 − zi

)
+

1 + ln |zi−1 − zi|
zi − zi−1

Aii+1 =

[
1 + ik0 (zi − zi+2)

zi+1 − zi+2

]
ln

(
zi+2 − zi
zi+1 − zi

)
+

1 + ln |zi+1 − zi|
zi+1 − zi

(14)

where i, j = 1, N , while by index N + 1 we should understand 1, by N + 2 we
understand 2, by 0 we understand N , by −1 we understand N − 1.
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The complex velocity derivative at node i is approximated by a backward finite

difference scheme, namely
dw (zi)

dz
=
w (zi) − w (zi−1)

zi − zi−1

, and is replaced in (13). We

obtain the following system of equations:

1

2π

+∞∫

−∞

Re (F (ς))

ς − zi
dς +

wi − wi−1

zi − zi−1

+ ik0wi =
1

2πi

N∑

j=1

wjAij , i = 1, N (15)

or the equivalent form:

1

2π

+∞∫

−∞

Re (F (ς))

ς − zi
dς =

N∑

j=1

wjÃij, i = 1, N (16)

where

Ãij = − 1

2πk0

Aij , j 6= i, j 6= i+ 1; Ãii = − 1

2πk0

(
Aii −

2πi

zi − zi−1

)
− 1;

Ãii−1 = − 1

2πk0

(
Aii−1 +

2πi

zi − zi−1

)
(17)

By denoting with vn, vs the normal and the tangential, respectively, com-
ponents of the perturbation velocity we can write that, on the border, w =
(vn − ivs) (nx + iny) while on Γ, vn = −nx, so that w = (−nx − ivs) (nx + iny).
Equation (16) becomes:

1

2π

+∞∫

−∞

Re (F (ς))

ς − zi
dς. =

N∑

j=1

(
−nj

x − ivj
s

) (
nj

x + inj
y

)
Ãij (18)

As the perturbation vanishes at far field we can accept that

1

2π

+∞∫

−∞

Re (F (ς))

ς − zi
dς =

1

2π

b∫

a

Re (F (ς))

ς − zi
dς (19)

Taking into account that on the free surface the following condition holds:

Re (F (z)) = − 1

k0

∂2u

∂x2
− k0u, z = x, and choosing M + 1 equidistant nodes on

it, x0 = a, xk = a+ k
b− a

M
, k = 1,M, in order to obtain a discretization of the free

surface into M isoparametric linear boundary elements we get:

1

2π

b∫

a

Re (F (ς))

ς − zi
dς =

1

2π

M−1∑

l=0

xl+1∫

xl

Re (F (ς))

ς − zi
dς =

1

2π

M−1∑

l=0

xl+1∫

xl

− 1

k0

∂2u
∂x2 − k0u

x− zi
dx

(20)
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For the isoparametric linear boundary element [xl, xl+1] we have: x = xl +
t (xl+1 − xl) , u = ul + t (ul+1 − ul) t ∈ [0, 1].

Following the calculations we have

xl+1∫

xl

− 1

k0

∂2u

∂x2
− k0u

x− zi
dx = Bliul +Cli (ul+1 − ul) = (Bli − Cli) ul + Cliul+1 (21)

where

Bli = −k0 (xl+1 − xl)

1∫

0

dt

xl + t (xl+1 − xl) − zi

and

Cli = −k0 (xl+1 − xl)

1∫

0

tdt

xl + t (xl+1 − xl) − zi
.

Concerning the integrals

I0 =

1∫

0

dt

xl + t (xl+1 − xl) − zi

and

I1 =

1∫

0

tdt

xl + t (xl+1 − xl) − zi
,

they could be expressed analytically, precisely we have

I0 =
1

xl+1 − xl

ln

(
xl+1 − zi
xl − zi

)
, I1 =

1

xl+1 − xl

− xl − zi
xl+1 − xl

I0,

where for the complex logarithm the main branch is considered. So, coefficients that
arise in (21) have expressions:

Bli = −k0 ln

(
xl+1 − zi
xl − zi

)
, Cli = −k0 [1 − I0 (xl − zi)] (22)

Finally, denoting by B′
li =

1

2π
(Bli −Cli) =

k0

2π
[1 − I0 (xl+1 − zi)], C ′

li =

1

2π
Cli =

−k0

2π
[1 − I0 (xl − zi)], (20) becomes:

1

2π

b∫

a

Re (F (ς))

ς − zi
dς =

M−1∑

l=0

[
B′

liul + C ′
liul+1

]
(23)
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For sake of simplicity we consider vi
s = vi, i = 1, N , and using the above relation,

and (19) we obtain the equivalent form for system (18):

M−1∑

l=0

[
B′

liul + C ′
liul+1

]
=

N∑

j=1

(
−nj

x − ivj

) (
nj

x + inj
y

)
Ãij (24)

As the number of unknowns N +M + 1 is greater than the number of equations for
“closing” the system we should now perform z → xk, k = 0,M in relations (11)
and (12). So we get

1

2π

+∞∫

−∞

Re (F (ς))

ς − zi
dς +

dw (xk)

dx
+ ik0w (xk) =

1

2πi

N∑

j=1

wjÂkj (25)

where Âkj are the nonsingular integrals whose exact expressions are:

Âkj =

[
1 + ik0 (xk − zj+1)

zj − zj+1

]
ln

(
zj+1 − xk

zj − xk

)
+

+

[−1 + ik0 (zj−1 − xk)

zj−1 − zj

]
ln

(
zj − xk

zj−1 − xk

)
. (26)

Then through (24) and a forward finite difference scheme for the complex velocity
derivative of first M control points on the free surface, we get:

M−1∑

l=0

[
B′

lkul + C ′
lkul+1

]
+
w (xk) − w (xk+1)

xk − xk+1

+ ik0w (xk) =

=
1

2πi

N∑

j=1

wjÂkj, k = 0,M − 1 (27)

For xk = xM a backward finite difference
dw (xM )

dx
=
w (xM ) − w (xM−1)

xM − xM−1

is to

be envisaged. Hence

M−1∑

l=0

[
B′

lMul + C ′
lMul+1

]
+
w (xM ) − w (xM−1)

xM − xM−1

+ ik0w (xM ) =
1

2πi

N∑

j=1

wjÂMj (28)

where the coefficients B′
lk and C ′

lk have analogous expressions with those arising
in (24), the only one difference being that now, for all nonsingular integrals (i.e.,
when xk is not a node of the element on which the integral is calculated), a natural
logarithm of a real number is implied.

Thus,

B′
li =

k0

2π
[1 − I0 (xl+1 − zi)] , C

′
li =

−k0

2π
[1 − I0 (xl − zi)] , (29)
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with I0 =
1

xl+1 − xl

ln

∣∣∣∣
xl+1 − xk

xl − xk

∣∣∣∣, for l 6= k− 1, l 6= k when k = 1,M − 1; l 6= 0

when k = 0; l 6= M − 1 when k = M. For the singular integrals, by using their finite
parts, we finally get:

B′
k−1k = B′

kk = B′
00 = B′

M−1M =
k0

2π
; C ′

k−1k = C ′
kk = C ′

00 = C ′
M−1M =

−k0

2π
(30)

By replacing in (27) and (28) the expression of the complex velocity on the
boundary, as function of the perturbation velocity components, and using the de-
notation s for v evaluated on the free surface (for avoiding any confusion), we can
write for k = 0,M − 1

M−1∑

l=0

[
Blkul + C ′

lkul+1

]
+
uk − isk − uk+1 + isk+1

xk − xk+1

+ ik0 (uk − isk) =

=
1

2πi

N∑

j=1

(
−nj

x − ivj

) (
nj

x + inj
y

)
Âkj, (31)

respectively, for k = M,

M−1∑

l=0

[
BlMul + C ′

lMul+1

]
+
uM − isM − uM−1 + isM−1

xM − xM−1

+ ik0 (uM − isM ) =

=
1

2πi

N∑

j=1

(
−nj

x − ivj

) (
nj

x + inj
y

)
ÂMj. (32)

In this way we have obtained the rest of the M + 1 equations that ensures the
mathematical coherence of our mathematical problem, i.e., the solving of the system
for the components of the perturbation velocity on the free surface and on the border
(boundary) of the obstacle. The final system which should be solved is made by
equations (24), (31) and (32).

For the outward normal components at the control points on the boundary, we

also have expressions depending on points coordinates: nj
x =

Im ag (zj − zj+1)

|zj − zj+1|
;

nj
y =

−Re al (zj − zj+1)

|zj − zj+1|
, and consequently all the coefficients which are present

in the final system can be expressed as functions of the discretization nodes co-
ordinates. Their calculation, system’s solution and evaluation of fluid action over
the body, expressed by the local pressure coefficient, can be performed by a com-
puter, irrespective of the obstacle shape and the discretization mesh used for the
boundaries.

After solving the system the problem is reduced at, it is also possible to find the
shape of the unknown free surface using the velocity field and the Bernoulli relation
(1). But this will be the objective of a further work.
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