Multi-dimensional Darboux type differential systems with quadratic nonlinearities

O.V. Diaconescu

Abstract

In the article the n-dimensional autonomous Darboux type differential systems with nonlinearities of the $2^{n d}$ degree are considered. With the aid of theorem on integrating factor the particular invariant $G L(n, \mathbb{R})$-integrals are constructed as well as the first integrals of Darboux type for considered systems. These integrals represent the algebraic curves of the $1^{\text {st }}$ degree. The recurrence formula of particular invariant $G L(n, \mathbb{R})$-integrals of the Darboux type differential system is found.

Mathematics subject classification: 34C05,34C14.
Keywords and phrases: The Darboux type differential system, comitant, invariant $G L(n, \mathbb{R})$-integrating factor, invariant $G L(n, \mathbb{R})$-integral.

Consider the system of differential equations

$$
\begin{equation*}
\frac{d x^{j}}{d t}=a_{\alpha}^{j} x^{\alpha}+a_{\alpha \beta}^{j} x^{\alpha} x^{\beta} \equiv P^{j}(x, a) \quad(j, \alpha, \beta=\overline{1, n} ; n \geq 2), \tag{1}
\end{equation*}
$$

where coefficient tensor $a_{\alpha \beta}^{j}$ is symmetrical in lower indices, in which the complete convolution holds. The system (1) is considered with the action of the group $G L(n, \mathbb{R})$ of center-affine transformations [1], and $x=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ is a phase variable vector of the system.

Suppose that system (1) admits ($n-1$)-dimensional commutative Lie algebra with operators

$$
\begin{equation*}
X_{\alpha}=\xi_{\alpha}^{j}(x) \frac{\partial}{\partial x^{j}} \quad(j=\overline{1, n} ; \alpha=\overline{1, n-1}) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda=P^{j}(x, a) \frac{\partial}{\partial x^{j}} \quad(j=\overline{1, n}) . \tag{3}
\end{equation*}
$$

Consider the determinant constructed on coordinates of operators (2)-(3) as follows

$$
\Delta=\left|\begin{array}{ccccc}
\xi_{1}^{1} & \xi_{1}^{2} & \xi_{1}^{3} & \ldots & \xi_{1}^{n} \tag{4}\\
\xi_{2}^{1} & \xi_{2}^{2} & \xi_{2}^{3} & \ldots & \xi_{2}^{n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\xi_{n-1}^{1} & \xi_{n-1}^{2} & \xi_{n-1}^{3} & \ldots & \xi_{n-1}^{n} \\
P^{1} & P^{2} & P^{3} & \ldots & P^{n}
\end{array}\right| .
$$

From [2] it follows that holds
(C) O.V. Diaconescu, 2007

Theorem 1. If n-dimensional differential system (1) admits ($n-1$)-dimensional commutative Lie algebra of operators (2), then the function $\mu=\frac{1}{\Delta}$, where $\Delta \neq 0$ from (4), is the integrating factor for Pfaff equations

$$
\sum_{i=1}(-1)^{i+j}\left|\begin{array}{cccccc}
\xi_{1}^{1} & \ldots & \xi_{1}^{i-1} & \xi_{1}^{i+1} & \ldots & \xi_{1}^{n} \tag{5}\\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\xi_{j-1}^{1} & \ldots & \xi_{j-1}^{i-1} & \xi_{j-1}^{i+1} & \ldots & \xi_{j-1}^{n} \\
\xi_{j+1}^{1} & \ldots & \xi_{j+1}^{i-1} & \xi_{j+1}^{i+1} & \ldots & \xi_{j+1}^{n} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
P^{1} & \ldots & P^{i-1} & P^{i+1} & \ldots & P^{n}
\end{array}\right| d x^{i}=0 \quad(i=\overline{1, n} ; j=\overline{1, n-1}),
$$

defining a general integral of the system (1).

Following [3], consider system (1) in a "Darboux" like case, i.e. system (1) written in the form

$$
\begin{equation*}
\frac{d x^{j}}{d t}=a_{\alpha}^{j} x^{\alpha}+2 x^{j} R(x) \equiv P^{j}(x, a) \quad(j, \alpha=\overline{1, n} ; n \geq 2) \tag{6}
\end{equation*}
$$

where $R(x) \neq 0$ is a homogeneous linear polynomial with constant coefficients in coordinates of the vector x.

According to [4] will treat invariant $G L(n, \mathbb{R})$-integrating factors and invariant $G L(n, \mathbb{R})$-integrals of the system (6) with $n=2,3,4,5, \ldots$

1. Case $n=2$. Will denote the invariants and comitants of the system (1) as follows

$$
\begin{align*}
& I_{1,2}=a_{\alpha_{1}}^{\alpha_{1}}, \quad I_{2,2}=a_{\alpha_{2}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}}, \quad K_{1,2}=a_{\alpha}^{\alpha_{1}} x^{\alpha} x^{\alpha_{2}} \varepsilon_{\alpha_{1} \alpha_{2}}, \\
& P_{1,2}=a_{\alpha_{1} \beta}^{\alpha_{1}} x^{\beta}, \quad P_{2,2}=a_{\alpha_{2}}^{\alpha_{1}} a_{\alpha_{1} \beta}^{\alpha_{2}} x^{\beta}, \quad \widetilde{K}_{1,2}=a_{\beta \gamma}^{\alpha_{1}} x^{\beta} x^{\gamma} x^{\alpha_{2}} \varepsilon_{\alpha_{1} \alpha_{2}}, \tag{7}
\end{align*}
$$

where the first of lower indices for I, K, P and \widetilde{K} from (7) shows the degree of invariant or comitant with respect to coefficients of the system (1), and the second lower index shows the dimension of the system $(n=2)$. In [4] it is shown that invariant condition which differs the system (6) from (1) is the following: $\widetilde{K}_{1,2} \equiv 0$. In the same paper with the aid of Theorem 1 and expressions (7) is proved

Theorem 2. System (1) with $\widetilde{K}_{1,2} \equiv 0$ and $n=2$ has the invariant $G L(2, \mathbb{R})$ integrating factor μ of the form $\mu^{-1}=K_{1,2} \Phi_{2,2}$, where $K_{1,2}=0$ and

$$
\Phi_{2,2} \equiv 8 I_{1,2} P_{1,2}-12 P_{2,2}+3\left(I_{1,2}^{2}-I_{2,2}\right)=0
$$

are invariant particular $G L(2, \mathbb{R})$-integrals of this system.
2. Case $n=3$. Following [3] will denote the invariants, comitants and covariants of the system (1) as follows

$$
\begin{align*}
& I_{1,3}=a_{\alpha_{1}}^{\alpha_{1}}, \quad I_{2,3}=a_{\alpha_{2}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}}, \quad I_{3,3}=a_{\alpha_{3}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} a_{\alpha_{2}}^{\alpha_{3}}, \\
& K_{3,3}=a_{\alpha_{1}}^{\beta_{1}} a_{\alpha_{2}}^{\beta_{2}} a_{\alpha_{3}}^{\alpha_{2}} x^{\alpha_{1}} x^{\alpha_{3}} x^{\beta_{3}} \varepsilon_{\beta_{1} \beta_{2} \beta_{3}}, \\
& P_{1,3}=a_{\alpha_{1} \beta}^{\alpha_{1}} x^{\beta}, \quad P_{2,3}=a_{\alpha_{2}}^{\alpha_{1}} a_{\alpha_{1} \beta}^{\alpha_{2}} x^{\beta}, \quad P_{3,3}=a_{\alpha_{3}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} a_{\alpha_{2} \beta}^{\alpha_{3}} x^{\beta}, \tag{8}\\
& \widetilde{K}_{1,3}=a_{\beta \gamma}^{\alpha_{1}} x^{\beta} x^{\gamma} x^{\alpha_{2}} x_{1}^{\alpha_{3}} \varepsilon_{\alpha_{1} \alpha_{2} \alpha_{3}},
\end{align*}
$$

where the meaning of the lower indices for I, K, P and \widetilde{K} is the same, and the vector $x_{1}=\left(x_{1}^{1}, x_{1}^{2}, x_{1}^{3}\right)$ is cogradient [5] to the phase variable vector $x=\left(x^{1}, x^{2}, x^{3}\right)$. The vectors x and x_{1} are independent. In [3] it is shown that invariant condition which differs the system (6) from (1) is the following: $\widetilde{K}_{1,3} \equiv 0$. In the same paper with the aid of Theorem 1 and expressions (8) is proved

Theorem 3. System (1) with $\widetilde{K}_{1,3} \equiv 0$ and $n=3$ has the invariant $G L(3, \mathbb{R})$ integrating factor μ of the form $\mu^{-1}=K_{3,3} \Phi_{3,3}$, where $K_{3,3}=0$ and

$$
\Phi_{3,3} \equiv 1 / 3\left(I_{1,3}^{2}-3 I_{1,3} I_{2,3}+2 I_{3,3}\right)-3 / 2\left(I_{2,3}-I_{1,3}^{2}\right) P_{1,3}-4 I_{1,3} P_{2,3}+4 P_{3,3}=0
$$

are invariant particular $G L(3, \mathbb{R})$-integrals of this system.
3. Case $n=4$. Consider the next invariants, comitants and covariants of the system (1)

$$
\begin{align*}
& I_{1,4}=a_{\alpha_{1}}^{\alpha_{1}}, \quad I_{2,4}=a_{\alpha_{2}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}}, \quad I_{3,4}=a_{\alpha_{3}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} a_{\alpha_{2}}^{\alpha_{3}}, \quad I_{4,4}=a_{\alpha_{4}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} a_{\alpha_{2}}^{\alpha_{3}} a_{\alpha_{3}}^{\alpha_{4}}, \\
& K_{6,4}=a_{\alpha_{1}}^{\beta_{1}} a_{\alpha_{2}}^{\beta_{2}} a_{\alpha_{3}}^{\alpha_{\alpha_{4}}^{\beta_{3}} a_{\alpha_{5}}^{\alpha_{4}} a_{\alpha_{5}}^{\alpha_{5}} x^{\alpha_{1}} x^{\alpha_{3}} x^{\alpha_{6}} x^{\beta_{4}} \varepsilon_{\beta_{1} \beta_{2} \beta_{3} \beta_{4}}, \quad P_{1,4}=a_{\alpha_{1} \beta}^{\alpha_{1}} x^{\beta},} \\
& P_{2,4}=a_{\alpha_{2}}^{\alpha_{1}} \alpha_{\alpha_{1} \beta} x^{\beta}, P_{3,4}=a_{\alpha_{3}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} a_{\alpha_{2} \beta}^{\alpha_{3}} x^{\beta}, P_{4,4}=a_{\alpha_{4}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{3}} \alpha_{\alpha_{3}}^{\alpha_{4}} x^{\beta}, \tag{9}\\
& \widetilde{K}_{1,4}=a_{\beta \gamma}^{\alpha_{1}} x^{\beta} x^{\gamma} x^{\alpha_{2}} x_{1}^{\alpha_{3}} x_{2}^{\alpha_{4}} \varepsilon_{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}},
\end{align*}
$$

where the meaning of the lower indices for I, K, P and \widetilde{K} is the same, and the vectors $x_{1}=\left(x_{1}^{1}, x_{1}^{2}, x_{1}^{3}, x_{1}^{4}\right)$ and $x_{2}=\left(x_{2}^{1}, x_{2}^{2}, x_{2}^{3}, x_{2}^{4}\right)$ are cogradient to the phase variable vector x. One can verify easily that invariant condition which differs the system (6) from (1) is the following: $\widetilde{K}_{1,4} \equiv 0$. With the aid of Theorem 1 and expressions (9) it is proved the following
Theorem 4. System (1) with $\widetilde{K}_{1,4} \equiv 0$ and $n=4$ has the invariant $G L(4, \mathbb{R})$ integrating factor μ of the form $\mu^{-1}=K_{6,4} \Phi_{4,4}$, where $K_{6,4}=0$ and

$$
\begin{equation*}
\Phi_{4,4} \equiv L_{4,4}-2\left(4 / 5 L_{3,4} P_{1,4}+L_{2,4} P_{2,4}+L_{1,4} P_{3,4}+P_{4,4}\right)=0 \tag{10}
\end{equation*}
$$

are invariant particular $G L(4, \mathbb{R})$-integrals of this system. In (10) we have

$$
\begin{gathered}
L_{1,4}=-I_{1,4}, \quad L_{2,4}=1 / 2\left(I_{1,4}^{2}-I_{2,4}\right), \quad L_{3,4}=1 / 6\left(3 I_{1,4} I_{2,4}-2 I_{3,4}-I_{1,4}^{3}\right), \\
L_{4,4}=1 / 24\left(8 I_{1,4} I_{3,4}-6 I_{4,4}-6 I_{1,4}^{2} I_{2,4}+3 I_{2,4}^{2}+I_{1,4}^{4}\right)
\end{gathered}
$$

where $I_{k, 4}(k=\overline{1,4})$ are from (9).
4. Case $n=5$. Consider the next invariants, comitants and covariants of the system (1)

$$
\begin{align*}
& I_{1,5}=a_{\alpha_{1}}^{\alpha_{1}}, \quad I_{2,5}=a_{\alpha_{2}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}}, \quad I_{3,5}=a_{\alpha_{3}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} a_{\alpha_{2}}^{\alpha_{3}}, \\
& I_{4,5}=a_{\alpha_{4}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} \alpha_{\alpha_{2}}^{\alpha_{3}} a_{\alpha_{3}}^{\alpha_{4}}, I_{5,5}=a_{\alpha_{5}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} a_{\alpha_{2}}^{\alpha_{3}} a_{\alpha_{3}}^{\alpha_{4}} a_{\alpha_{4}}^{\alpha_{5}}, \\
& K_{10,5}=a_{\alpha_{1}}^{\beta_{1}} \alpha_{\alpha_{2}}^{\beta_{2}} a_{\alpha_{3}}^{\alpha_{2}} \alpha_{\alpha_{4}}^{\beta_{3}} a_{\alpha_{5}}^{\alpha_{4}} a_{\alpha_{6}}^{\alpha_{5}} a_{\alpha_{7}}^{\beta_{4}} a_{\alpha_{8}}^{\alpha_{7}} a_{\alpha 9}^{\alpha_{8}} a_{\alpha_{10}}^{\alpha_{9}} x^{\alpha_{1}} x^{\alpha_{3}} x^{\alpha_{6}} x^{\alpha_{10}} x^{\beta_{5}} \varepsilon_{\beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5}}, \\
& P_{1,5}=a_{\alpha_{1} \beta}^{\alpha_{1}} x^{\beta}, \quad P_{2,5}=a_{\alpha_{2}}^{\alpha_{1}} a_{\alpha_{1} \beta}^{\alpha_{2}} x^{\beta}, \quad P_{3,5}=a_{\alpha_{3}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} \alpha_{\alpha_{2} \beta}^{\alpha_{3}} x^{\beta}, \tag{11}\\
& P_{4,5}=a_{\alpha_{4}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} a_{\alpha_{2}}^{\alpha_{3}} a_{\alpha_{3} \beta}^{\alpha_{4}} x^{\beta}, P_{5,5}=a_{\alpha_{5}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} a_{\alpha_{2}}^{\alpha_{3}} a_{\alpha_{3}}^{\alpha_{4}} a_{\alpha_{4} \beta}^{\alpha_{5}} x^{\beta}, \\
& \widetilde{K}_{1,5}=a_{\beta \gamma}^{\alpha_{1}} x^{\beta} x^{\gamma} x^{\alpha_{2}} x_{1}^{\alpha_{3}} x_{2}^{\alpha_{4}} x_{3}^{\alpha_{5}} \varepsilon_{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}},
\end{align*}
$$

where the meaning of lower indices for I, K, P and \widetilde{K} is the same, and the vectors $x_{i}=\left(x_{i}^{1}, x_{i}^{2}, x_{i}^{3}, x_{i}^{4}, x_{i}^{5}\right),(i=\overline{1,3})$ are cogradient to the phase variable vector x. As it is easy to see the invariant condition which differs the system (6) from (1) is the following: $\widetilde{K}_{1,5} \equiv 0$. With the aid of Theorem 1 and expressions (11) is proved the following

Theorem 5. System (1) with $\widetilde{K}_{1,5} \equiv 0$ and $n=5$ has the invariant $G L(5, \mathbb{R})$ integrating factor μ of the form $\mu^{-1}=K_{10,5} \Phi_{5,5}$, where $K_{10,5}=0$ and

$$
\begin{equation*}
\Phi_{5,5} \equiv L_{5,5}-2\left(5 / 6 L_{4,5} P_{1,5}+L_{3,5} P_{2,5}+L_{2,5} P_{3,5}+L_{1,5} P_{4,5}+P_{5,5}\right)=0 \tag{12}
\end{equation*}
$$

are invariant particular $G L(5, \mathbb{R})$-integrals of this system. In (12) we have

$$
\begin{gathered}
L_{1,5}=-I_{1,5}, \quad L_{2,5}=1 / 2\left(I_{1,5}^{2}-I_{2,5}\right), \quad L_{3,5}=1 / 6\left(3 I_{1,5} I_{2,5}-2 I_{3,5}-I_{1,5}^{3}\right), \\
L_{4,5}=1 / 24\left(8 I_{1,5} I_{3,5}-6 I_{4,5}-6 I_{1,5}^{2} I_{2,5}+3 I_{2,5}^{2}+I_{1,5}^{4}\right), \\
L_{5,5}=-1 / 120\left(I_{1,5}^{5}-10 I_{1,5}^{3} I_{2,5}+20 I_{1,5}^{2} I_{3,5}+15 I_{1,5} I_{2,5}^{2}-30 I_{1,5} I_{4,5}-20 I_{2,5} I_{3,5}+24 I_{5,5}\right),
\end{gathered}
$$ where $I_{k, 5}(k=\overline{1,5})$ are from (11).

5. The general case $n \geq 2$.

Write the center-affine invariants, comitants and covariants in general case of system (1) as follows

$$
\begin{align*}
& I_{1, n}=a_{\alpha_{1}}^{\alpha_{1}}, \quad I_{2, n}=a_{\alpha_{2}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}}, \quad I_{3, n}=a_{\alpha_{3}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} a_{\alpha_{2}}^{\alpha_{3}}, \ldots, I_{n, n}=a_{\alpha_{n}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} a_{\alpha_{2}}^{\alpha_{3}} \ldots a_{\alpha_{n-1}}^{\alpha_{n}}, \\
& K_{m, n}=a_{\alpha_{1}}^{\beta_{1}} a_{\alpha_{2}}^{\beta_{2}} a_{\alpha_{3}}^{\alpha_{2}} a_{\alpha_{4}}^{\beta_{3}} \alpha_{\alpha_{5}}^{\alpha_{4}} a_{\alpha_{6}}^{\alpha_{5}} \beta_{\alpha_{7}}^{\beta_{4}} a_{\alpha_{8}}^{\alpha_{7}} a_{\alpha_{9}}^{\alpha_{1}} a_{\alpha_{10}}^{\alpha_{9}} \ldots a_{\alpha_{m}}^{\alpha_{m-1}} x^{\alpha_{1}} x^{\alpha_{3}} x^{\alpha_{6}} x^{\alpha_{10}} \ldots x^{\alpha_{m}} x^{\beta_{n}} \varepsilon_{\beta_{1} \ldots \beta_{n}}, \\
& P_{1, n}=a_{\alpha_{1} \beta}^{\alpha_{1}} x^{\beta}, \quad P_{2, n}=a_{\alpha_{2}}^{\alpha_{1}} a_{\alpha_{1} \beta^{2}}^{x^{\beta}}, P_{3, n}=a_{\alpha_{3}}^{\alpha_{1}} a_{\alpha_{2}}^{\alpha_{2}} a_{\alpha_{2} \beta} x^{\beta}, \ldots, \\
& P_{n, n}=a_{\alpha_{n}}^{\alpha_{1}} a_{\alpha_{1}}^{\alpha_{2}} a_{\alpha_{2} \ldots}^{\alpha_{3}} a_{\alpha_{n-1} \beta^{\beta^{\prime}}}^{x^{\beta}} \\
& \widetilde{K}_{1, n}=a_{\alpha \beta}^{\beta_{1}} x^{\alpha} x^{\beta} x^{\beta_{2}} x_{1}^{\beta_{3}} x_{2}^{\beta_{4}} \ldots x_{n-2}^{\beta_{n}} \varepsilon_{\beta_{1} \beta_{2} \ldots \beta_{n}}, \\
& \left(\alpha, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}, \ldots, \alpha_{n}, \beta, \beta_{1}, \beta_{2}, \ldots, \beta_{n}=\overline{1, n} ; \quad m=\frac{n(n-1)}{2} ; n \geq 2\right) \tag{13}
\end{align*}
$$

where $\varepsilon_{\beta_{1} \beta_{2} \beta_{3} \ldots \beta_{n}}$ is a unit n-vector, and the vectors $x_{i}=\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{n}\right)$, ($i=\overline{1, n-2}$) are independent cogradient vectors [5] to x.
Remark 1. System (1) with $\widetilde{K}_{1, n} \equiv 0$ has the form (6), where $R(x)=\frac{1}{n+1} P_{1, n}$.
Will call the systems written in the form (6) a Darboux type differential system (analogically to the case when $n=2$ in [4]).

As it is easy to see the center-affine invariant condition differ the system (6) from (1). Indeed, it is true that for system (6) with $\widetilde{K}_{1, n} \equiv 0$, we have $P_{1, n}=(n+1) R(x)$.

One can verify that the next theorem generalizes cases 1-4
Theorem 6. System (1) with $\widetilde{K}_{1, n} \equiv 0$ and $n=2,3,4,5$ has the invariant $G L(n, \mathbb{R})$ integrating factor μ of the form

$$
\mu^{-1}=K_{m, n} \Phi_{n, n},
$$

where $K_{m, n}=0$ and
$\Phi_{n, n} \equiv L_{n, n}-2\left(\frac{n}{n+1} L_{n-1, n} P_{1, n}+L_{n-2, n} P_{2, n}+L_{n-3, n} P_{3, n}+\ldots+L_{1, n} P_{n-1, n}+P_{n, n}\right)=0$
are invariant particular $G L(n, \mathbb{R})$-integrals of this system, and $L_{i, n}(i=\overline{1, n})$ are the coefficients of characteristic equation of the system (1) as follows

$$
\begin{equation*}
\lambda^{n}+L_{1, n} \lambda^{n-1}+L_{2, n} \lambda^{n-2}+\ldots+L_{n-1, n} \lambda+L_{n, n}=0 \tag{15}
\end{equation*}
$$

and they can be expressed though the invariants from (13) by the recurrence formula

$$
\begin{equation*}
L_{i, n}=-\frac{1}{i}\left(I_{i, n}+I_{i-1, n} L_{1, n}+I_{i-2, n} L_{2, n}+\ldots+I_{1, n} L_{i-1, n}\right) \quad(i=\overline{1, n}) . \tag{16}
\end{equation*}
$$

With the aid of the cases 1-4 it is easy to verify that holds the next
Theorem 7. System (1) with $\widetilde{K}_{1, n} \equiv 0$ and $n=2,3,4,5$ has the first invariant $G L(n, \mathbb{R})$-integral of Darboux type [6] as follows

$$
\begin{equation*}
K_{m, n}^{-1} \Phi_{n, n}^{n}=C \tag{17}
\end{equation*}
$$

if and only if $I_{1, n}=0$, where $K_{m, n}, \widetilde{K}_{1, n}, I_{1, n}$ are from (13), and $\Phi_{n, n}$ is from (14).
The proof of Theorem 7 for system (6) follows from the equation

$$
\Lambda\left(K_{m, n}^{-1} \Phi_{n, n}^{n}\right)=-I_{1} K_{m, n}^{-1} \Phi_{n, n}^{n},
$$

where Λ is from (3).
Remark 2. There exists the assumption that Theorems 6 and 7 hold for $n \geq 6$.
One can verify that holds
Remark 3. Expression $K_{m, n}=0$ from (13) is the invariant particular $G L(n, \mathbb{R})$ integral for linear system $\frac{d x^{j}}{d t}=a_{\alpha}^{j} x^{\alpha} \quad(\alpha=\overline{1, n})$.

References

[1] Sibirsky K. Introduction to the algebraic theory of invariants of differential equations. Kishinev, Shtiintsa, 1982 (English transl.: Manchester University Press, Manchester, 1988).
[2] Diaconescu O.V., Popa M.N. Lie theorem and $G L(n, \mathbb{R})$-orbits of multi-dimensional polynomial differential systems. Proceedings of the 5th Annual Symposium on Mathematics Applied in Biology and Biophysics, Iasi, 2006.
[3] Gherstega N.N. Lie algebras for three-dimensional differential system and applications. Abstract for Ph. D. thesis, 2006.
[4] Diaconescu O.V., Popa M.N. Lie algebras of operators and invariant $G L(2, R)$-integrals for Darboux type differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2006, N 3(52), p. 3-16.
[5] Gurevich G.B. Fondations of the theory of algebraic invariants. Moscow, GITTL, 1948 (English transl.: Noordhoff, 1964).
[6] Darboux G. Memoire sur les equations differentielles algebriques du premier order et du premier degree. Bull. Sciences Math., 1878, Ser. 2, N 2(1), p. 60-96, p. 123-144, p. 151-200.

Institute of Mathematics and Computer Science Received March 15, 2007
Academy of Sciences of Moldova
str. Academiei, 5
MD-2028, Chisinau, Moldova
E-mail: odiac@math.md

