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The property of universality for some monoid algebras
over non-commutative rings

Elena P. Cojuhari

Abstract. We define on an arbitrary ring A a family of mappings (0z,y) subscripted
with elements of a multiplicative monoid G. The assigned properties allow to call these
mappings derivations of the ring A. A monoid algebra of G over A is constructed
explicitly, and the universality property of it is shown.
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In this note we consider monoid algebras over non-commutative rings. First,
we introduce axiomatically a family of mappings ¢ = (0,,) defined on a ring A
and subscripted with elements of a multiplicative monoid G. Due to their assigned
properties these mappings can be called derivations of A. Next, we construct a
monoid algebra A(G) by means of the family o, and the universality of it is shown.

1. Let A be aring (in general non-commutative) and G' a multiplicative monoid.
Throughout the paper we consider 1 # 0 (where 0 is the null element of A, and 1
is the unit element for multiplication), the unit element of G is denoted by e. We
introduce a family of mappings of A into itself by the following assumption.

(A) For each € G there exists a unique family o, = (044)yeq of mappings
Ozy: A — A such that o,, = 0 for almost all y € G (here and thereafter, almost
all will mean all but a finite number, that is, 0, , # 0 only for a finite set of y € G)
and for which the following properties are fulfilled:

(1) ozyla+b) =o0zy(a) + 0z4(b) (a,b€ Asx,y € G);

(i1) ozylab) =3 cqou2(a)o.y(b) (a,b € Asz,y € G);

(140) Ogyz = Y yoes Ozu © Oyw (2,9, 2 € G);

(iv1) 02y(1) =0 (z # y;2,y € G); (v2) 022(1) =1 (z € G);

(tv3) Oeg(a) =0 (x #e;z € G); (ive) Ocela) =a (a € A).

In (ii) the elements are multiplied as in the ring A, but in (ii7) the symbol o
means the composition of maps.

Examples. 1. Let A be a ring and let G be a multiplicative monoid, and let o be
a monoid-homomorphism of G into End(A), i.e. o(zy) = o(x)oo(y) (x,y € G) and
o(e) = 14. We define 0, , : A — A such that 0, , = o(x) for x € G and 0, =0
for y # x. The properties (i) — (ivg) of (A) are verified at once.
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2. Let A be a ring, and let a be an endomorphism of A and § be an
a-differentiation of A, i.e.

d(a+b) =d(a) +0(b), d(ab) = d(a)b + a(a)d(b)

for every a,b € A. Denote by G the monoid of elements z,, (n = 0,1,...) endowed
with the law of composition defined by =,z = Tpim (n,m =0,1,...; 9 :=¢€). We
write oy, instead of 04, »,. by defining 0y, : A — A as the following mappings
o0 = la, 010 =96, 011 = @, Opm = 0 for m > n and o,y = Zj1+...+jn:m 01j, ©
ooy, (m=20,1,...,n; n =1,2,...), where jp = 0,1 (k = 1,...,n). The family
0 = (onm) satisfies the axioms (i) — (ivg) of (A).

2. Next, we consider an algebra A(G) connected with the structure of differ-
entiation o = (0,,4). Let A(G) be the set of all mappings a : G — A such that
a(x) = 0 for almost all z € G. We define the addition in A(G) to be the ordinary
addition of mappings into the additive group of A and define the operation of A
on A(G) by the map (a,a) — aa (a € A), where (ac)(x) = aa(x) (x € G). Note
that, in respect to these operations, A(G) forms a left module over A. Following
notations made in [1] we write an element a € A(G) as a sum a = ) . ay - T,
where by a-z (a € A, x € G) is denoted the mapping whose value at z is a and 0 at
elements different from z. Certainly, the above sum is taken over almost all x € G.
A(G) becomes a ring if for elements of the form a -z (a € A;x € G) we define their
product by the rule

(a-x)(b-y) = ZCLsz 2y (a,b € A;z,y € G)
zeG

and then extend for a, f € A(G) by the property of distributivity. We let

aa = Z (Z ayay,x(a)>-:17, (a € A,alpha € A(G))

zeG yeG

for a € A and a € A(G), and thus we obtain an operation of A on A(G) and in
such a way we make A(G) into a right A-module. Thus, we may view A(G) as an
algebra over A.

Remark. Let us consider the situation described in Example 1. Then the law of
multiplication in A(G) is given as follows

(Z ag a;) (Z by - a;)z Z Z ap0g 2(by) - @

zeG zeG zeG yeG

In this case, the monoid algebra A(G) represents a crossed product [2, 3] of the
multiplicative monoid G' over the ring A with respect to the factors p,, = 1
(x,y € G). If G is a group, and 0 : G — End(A) is such that o(x) = 14 for
all x € G, we evidently obtain an ordinary group ring [4] (the commutative case see
also [5]).
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3. In this subsection we show that A(G) is a free G - algebra over A. Let
B be another ring. Given a ring-homomorphism f : A — B it can be defined
on the ring B a structure of A-module, defining the operation of A on B by the
map (a,b) — f(a)b for all a € A and b € B. We denote this operation by
a * b. The axioms for a module are trivially verified. Let now ¢ : G — B be
a multiplicative monoid-homomorphism. Denote by (B; f, ¢) the module formed by
all linear combinations of elements p(z) (x € G) over A in respect to the operation
x. The axioms for a left A-module are trivially verified.

We assume that the homomorphisms f and ¢ satisfy the following assumption.

(B) »(G)f(A) C(B; [, ).

Thus, it is postulated that an element ¢(z)f(a) (a € A,z € G) can be written
as a linear combination of the form >y p o b¢(y). The coefficients b depend on
o(z),o(y) and f(a). To designate this fact we denote the corresponding coefficients
by 0 4(2),0(y)(f(a)). Therefore, it can be considered that there are defined a family
of mappings o

o(x),0(y) : B — B such that
0(2)f(a) =D Opw)pw (f@)ey) (a € Az eq).
yeG

By these considerations, we may view (B; f, ¢) as a right A-module. In order to make
the module (B; f, ¢) to be a ring we require the following additional assumption.

(C) The homomorphisms f and ¢ are such that the following diagram

A L. B
Oz,y T T Tp(x),0(y)
A 1 B

is commutative for every x,y € G, i.e. 0y(y) o) © f = foowy (z,y € G).
We define multiplication in (B; f, ¢) by the rules

(3 v (@) (30 b 0l) ) = 32 e % 0() by * 0(0),
zeG

zelG zeGyeG

(ar * 90(117))(by * (’D(y)) = f(am) Z Op(z),0(2) (f(by))('p(zy)
z€G
The verification that (B; f, ¢) is a ring under the above laws of composition is direct.
Thus, we have made (B; f, ¢) into an algebra over A (in general, non-commutative).
Next, we define a category C whose objects are algebras (B; f, ) constructed
as above, and whose morphisms between two objects (B; f,¢) and (B'; f',¢) are
ring-homomorphisms h : B — B’ making the diagrams commutative:

G e —— G
2] L ¢
B I B
f 7 i f
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The axioms for a category are trivially satisfied. We call a universal object in
the category C a free G-algebra over A, or a free (A, G)-algebra. It turns out that
the monoid algebra A(G) represents a free (A, G)-algebra. To this end, we observe
that the mapping ¢ : G — A(G) given by po(z) = 1.2z (z € G) is a monoid-
homomorphism. The mapping ¢ is embedding of G into A(G). In addition, we have
a ring-homomorphism fy: A — A(G) given by fo(a) =a-e (a € A). Obviously, fy
is also an embedding. We identify A(G) with the triple (A(G); fo, o) and in this
sense we treat A(G) as an object of the category C. The property of the universality
of A(G) is formulated by the following assertion.

Theorem 1. Let A be a ring, and G a multiplicative monoid for which the assump-
tions (A), (B) and (C) are satisfied. Then for every object (B; f,¢) of the category
C there exists a unique ring-homomorphism h : A(G) — B making the following
diagram commutative

G === G
vo | 1 ¥
AG) & B
fo i i f

A === A

The relation with the theory of skew polynomial rings [6-8] and with those
obtained by Yu. M. Ryabukhin [9] (see also [10]), and further properties of the
general derivation mappings o, , (z,y € G) will be given in a subsequent publication.
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