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On some quasi-identities in finite quasigroups ∗
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Abstract. In this article we consider some quasi-identities in quasigroups, in partic-
ular, quasi-identities connected with parastrophic orthogonality of a quasigroup. We
also research some quasi-identities in quasigroups (in loops) with one parameter δ (δ-
quasi-identities) which arose by the study of detecting coding systems such as check
character systems in [6] (see also [5,7]), establish equivalence of such quasi-identities,
connection of some of them with orthogonality of quasigroups and give a number of
examples of finite quasigroups with such δ-quasi-identities.
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1 Introduction

It is known that the concept of a quasi-identity (or a conditional identity [1, 11,
12]) in an algebraic system is a generalization of the concept of an identity and is
used by the study of different algebraic systems, in particular, groups, semigroups.

A quasi-identity (or a conditional identity) is a formula of the form

(∀x1) . . . (∀xn) (u1 = v1 & . . . &um = vm ⇒ u = v)

where u, v, ui, vi (i = 1, 2, . . . ,m) are words in the alphabet {x1, x2, . . . , xn}.

By writing of quasi-identities the quantor prefix usually is omitted. Each identity
u = v can be changed by the quasi-identity x = x ⇒ u = v.

Some classes of algebraic systems are given by means of quasi-identities. So,
groupoids, in particular semigroups (Q, ·) with the left (right) cancelation are defined
by the quasi-identity ca = cb ⇒ a = b (ac = bc ⇒ a = b) in a groupoid (in
a semigroup) (Q, ·). The known class of separative semigroups is defined by the
following quasi-identity: a2 = ab = b2 ⇒ a = b. The class of finite groups is simply
the class of semigroups with left and right cancelation.

The concept of a quasi-identity lies in the base of definition of a quasi-variety of
algebraic systems. So, the class of semigroups with the two-sided cancelation (the
class of separative semigroups) forms a quasi-variety [1].
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Different quasi-identities arise also in quasigroups and loops. So, a definition
and some properties of finite quasigroups can be given by means of quasi-identities.

So, a finite quasigroup (Q, ·) can be defined as a groupoid with the right and the
left cancelations, that is with the quasi-identities:

xz = yz ⇒ x = y and zx = zy ⇒ x = y.

For a finite qroupoid the right (left) cancelation is equivalent to left (right)
invertibility.

A quasigroup (Q, ·) is called diagonal [9] if the mapping x → x · x = x2 is a
permutation (bijection) on Q. In the case of a finite quasigroup this means that in
such quasigroup the quasi-identity x2 = y2 ⇒ x = y holds.

A quasigroup (Q, ·) is called anti-commutative [3] if xy 6= yx for x 6= y, that is
the quasi-identity xy = yx ⇒ x = y holds.

A quasigroup of Stein (Q, ·) (that is a quasigroup with the identity x · xy = yx)
is an example of anti-commutative quasigroup: if xy = yx, then x ·xy = xy, xy = y,
x = y, since a quasigroup of Stein is idempotent (that is x2 = x for each x ∈ Q).
A quasigroup is called anti-abelian if xy = zt and yx = tz imply x = z and y = t.
Such a quasigroup is anti-commutative also [15].

In this article we consider some other quasi-identities in quasigroups, in particu-
lar, quasi-identities connected with parastrophic orthogonality of a quasigroup. We
also research some quasi-identities in quasigroups (in loops) with one parameter δ
(δ-quasi-identities), which arose by the study of coding systems such as check char-
acter systems in [6] (see also [5, 7]), establish equivalence of such quasi-identities,
connection of some of them with orthogonality of quasigroups and give a number of
examples of finite quasigroups with these δ-quasi-identities.

2 Some necessary notions and results

A binary quasigroup is a particular case of a groupoid.

A groupoid (Q, ·) is a set Q with some binary operation (·).

A groupoid (Q, ·) with the right (left) cancelation is a groupoid such that in it
the following quasi-identities hold: xa = ya ⇒ x = y (ax = ay ⇒ x = y).

A quasigroup (Q, ·) is a groupoid in which every of the equations ax = b and
xa = b has a unique solution for any a, b ∈ Q. In other words, a quasigroup is a
groupoid which is invertible to the right and to the left.

A quasigroup (Q, ·) is finite of order n if the set Q is finite and |Q| = n.

A quasigroup (Q, ·) with a left identity f (right identity e) is a quasigroup such
that fx = x (xe = x) for every x ∈ Q.

A loop (Q, ·) is a quasigroup with the identity e: xe = ex = x for each x ∈ Q.
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A loop (Q, ·) is called a loop Moufang if it satisfies the identity (zx · y) · x =
z(x · yx).

The primitive quasigroup (Q, ·, \, /), where x·y ⇔ z/y = x, x\z = y, corresponds
to every quasigroup (Q, ·).

If for the designation of a quasigroup operation (·) the letter A is used, then
a primitive quasigroup (Q,A,A−1,−1A), where A(x, y) = z ⇔ A−1(x, z) = y,
−1A(z, y) = x corresponds to a quasigroup (Q,A). The operations A−1, −1A (or
(\), (/)) are also quasigroup operations which are called the right, left inverse oper-
ations for A (for (·)) respectively.

A quasigroup (Q,B) is isotopic to a quasigroup (Q,A) if there exists a tuple
T = (α, β, γ) of permutations on Q such that B(x, y) = γ−1A(αx, βx) (shortly,
B = A(α,β,γ) = AT ).

With any quasigroup operation A five parastrophes (or conjugate operations) are
connected

A−1, −1A, (−1A)−1, −1(A−1) and A∗
(

=−1 ((−1A)−1) = (−1(A−1))−1
)

,

where A∗(x, y) = A(y, x) [3].

Definition 1 [2]. Two operations A and B, given on a set Q, are called orthogonal
(shortly, A ⊥ B) if the system of equations {A(x, y) = a, B(x, y) = b} has a unique
solution for all a, b ∈ Q.

Let Q be a finite or infinite set, A and B be operations on Q, then the right
(left) multiplication A · B (A ◦ B) of Mann is defined in the following way:

(A · B)(x, y) = A(x,B(x, y)), (A ◦ B)(x, y) = A(B(x, y), y).

All invertible to the right (to the left) operations on a set Q form a group with
respect to the right (left) multiplication of Mann [13].

According to the criterion of Belousov [4] two quasigroups (Q,A) and (Q,B)
are orthogonal if and only if the operation A · B−1 (A ◦−1B) is a quasigroup.

3 Parastrophic orthogonality of quasigroups and quasi-identities

A quasigroup (Q,A) can be orthogonal with some its parastrophes. As it was
proved by G. Mullen and V. Shcherbacov in [14], conditions for this orthogonality of
finite quasigroups can be expressed by quasi-identities in the corresponding primitive
quasigroup (Q,A−1,−1A). We shall give some his quasi-identities and other ones ob-
tained with the help of the Belousov’s criterion of orthogonality of two quasigroups.

Proposition 1. Let (Q,A) be a finite quasigroup, (Q, ·, A−1,−1A) be the correspond-
ing primitive quasigroup. Then

A ⊥ A−1 ⇔ A(x,A(x, z)) = A(y,A(y, z)) ⇒ x = y, (1)
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A ⊥−1 A ⇔ A(A(z, x), x) = A((z, y), y) ⇒ x = y, (2)

A ⊥ (−1A)−1 ⇔ A(x,−1 A(x, z)) = A(y,−1A(y, z)) ⇒ x = y, (3)

A ⊥−1 (A−1) ⇔ A(A−1(z, x), x) = A(A−1(z, y), y) ⇒ x = y, (4)

A ⊥ A∗ ⇔ A(A−1(x, z), x) = A(A−1(y, z), y) ⇒ x = y. (5)

Proof. By the criterion of Belousov A ⊥ A−1 if and only if the operation (A ·
(A−1)−1) = A · A is a quasigroup. It is valid if and only if the quasi-identity (1)
holds, since the operation A · A is always invertible from the right.

A ⊥−1 A if and only if A ◦−1 (−1A) = A ◦ A is a quasigroup, that is the quasi-
identity (2) is valid if we take into account that the operation A ◦ A is always
invertible to the left.

By the criterion, A ⊥ (−1A)−1 if and only if the invertible from the right operation
A · ((−1A)−1)−1 = A ·−1A is a quasigroup, that is invertible from the left. It is valid
if and only if the quasi-identity (3) holds.

Analogously, A ⊥−1 (A−1) if and only if the invertible from the left operation
A ◦−1(−1(A−1)) = A ◦ A−1 is a quasigroup, that is the quasi-identity (4) holds.

At last, A ⊥ A∗ if and only if A∗·A−1 is a quasigroup, that is the quasi-identity (5)
holds. �

Proposition 2. Let (Q, ·, \, /) be a finite primitive quasigroup. Then
the quasi-identity (1) is equivalent to the quasi-identity

A(−1A(x, z), x) = A(−1A(y, z), y) ⇒ x = y, (6)

the quasi-identity (2) is equivalent to the quasi-identity

A(x,A−1(z, x)) = A(y,A−1(z, y) ⇒ x = y, (7)

the quasi-identity (3) is equivalent to the quasi-identity

A(A(x, z), x) = A(A(y, z), y) ⇒ x = y, (8)

the quasi-identity (4) is equivalent to the quasi-identity

A(x,A(z, x)) = A(y,A(z, y)) ⇒ x = y, (9)

the quasi-identity (5) is equivalent to the quasi-identity

A(x,−1A(z, x)) = A(y,−1A(z, y)) ⇒ x = y. (10)

Proof. Indeed, A ⊥ A−1 by the criterion of Belousov if and only if A ◦−1(A−1) is a
quasigroup. But (A ◦−1 (A−1))(z, x) = A(−1(A−1)(z, x), x) = A(−1A(x, z), x), since
−1(A−1)(z, x) =−1 A(x, z). So A ◦−1(A−1) is a quasigroup if and only if (6) holds.
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A ⊥−1 A if and only if A · (−1A)−1 is a quasigroup. Taking into account that
(−1A)−1(x, z) = A−1(z, x) we have (A · (−1A)−1)(x, z) = A(x, (−1A)−1(x, z)) =
A(x,A−1(z, x)). So A · (−1A)−1 is a quasigroup if and only if (7) holds.

A ⊥ (−1A)−1 if and only if A ◦−1((−1A)−1) = A ◦ A∗ is a quasigroup, that is the
quasi-identity A(A∗(z, x), x) = A(A∗(z, y), y) ⇒ x = y or (8) holds.

A ⊥−1 (A−1) if and only if A · (−1(A−1))−1 = A · A∗ is a quasigroup. This
condition is equivalent to the quasi-identity (9).

A∗ ⊥ A if and only if A∗ ◦−1A is a quasigroup if and only if the quasi-identity
A∗(−1A(z, x), x) = A∗(−1A(z, y), y) ⇒ x = y or (10) holds. �

Using the designation (·) for an operation A we can write the quasi-identities
(1)-(10),respectively, in the following way (we use the same numeration for them) :

x · xz = y · yz ⇒ x = y, (1)

zx · x = zy · y ⇒ x = y, (2)

x · (x/z) = y · (y/z) ⇒ x = y, (3)

(z\x) · x = (z\y) · y ⇒ x = y, (4)

(x\z) · x = (y\z) · y ⇒ x = y, (5)

(x/z) · x = (y/z) · y ⇒ x = y, (6)

x · (z\x) = y · (z\y) ⇒ x = y, (7)

xz · x = yz · y ⇒ x = y, (8)

x · zx = y · zy ⇒ x = y, (9)

x · (z/x) = y · (z/y) ⇒ x = y. (10)

Note that the quasi-identities (1), (2), (8) and (9) were obtained in [14].
From Proposition 1 and 2 it follows at once

Theorem 1. Let (Q, ·) be a finite quasigroup. Then

(·) ⊥ (·)−1 ⇔ x · xz = y · yz ⇒ x = y ⇔ (x/z) · x = (y/z) · y ⇒ x = y,

(·) ⊥−1 (·) ⇔ zx · x = zy · y ⇒ x = y ⇔ x · (z\x) = y · (z\y) ⇒ x = y,

(·) ⊥ (−1(·))−1 ⇔ x · (x/z) = y · (y/z) ⇒ x = y ⇔ xz · x = yz · y ⇒ x = y,

(·) ⊥−1 ((·)−1) ⇔ (z\x) · x = (z\y) · y ⇒ x = y ⇔ x · zx = y · zy ⇒ x = y,

(·) ⊥ (·)∗ ⇔ (x\z) · x = (y\z) · y ⇒ x = y ⇔ x · (z/x) = y · (z/y) ⇒ x = y.

Corollary 1. Let (Q,A) be a finite commutative quasigroup. Then

(i) all quasi-identities (1)-(4),(6)-(9) are equivalent;
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(ii) each one of the first four parastrophic orthogonalities of Theorem 1 implies the
rest of these orthogonalities.

Proof. In the case of a commutative quasigroup (that is xy = yx for all x, y ∈ Q)
it is easy to see that

(1) ⇔ (2) ⇔ (8) ⇔ (9).

Item (ii) follows from this fact and Theorem 1. �

In a finite commutative quasigroup the quasi-identities (5) and (10) do not hold,
since (·) and (·)∗ = (·) are not orthogonal.

Corollary 2. Let (Q, ·) be a finite loop Moufang (in particular, a finite group).
Then

(i) if in (Q, ·) one of the quasi-identities (1)-(4), (6)-(9) holds, then (Q, ·) is
diagonal;

(ii) if (Q, ·) is diagonal, then (1) ⇔ (2) ⇔ (8) ⇔ (9) and (Q, ·) is orthogonal to
each of its parastrophes, except (Q, (·)∗);

(iii) (Q, ·) is not orthogonal to (Q, (·)∗);

(iv) a loop Moufang (Q, ·) of odd order is orthogonal to each of its parastrophes,
except (Q, (·)∗).

Proof. (i) Let (1) ((2), (8) or (9)) hold in a finite loop Moufang, then by z = e (e
is the identity of the loop) we have that x2 = y2 ⇒ x = y. The rest quasi-identities,
except (5) and (10), are equivalent to one of these quasi-identities by Theorem 1.

(ii) Let (Q, ·) be diagonal, that is x2 = y2 ⇒ x = y, then (1) and (2) also hold,
since a loop Moufang is diassociative (that is each two elements generate a
subgroup) [3]. Show that from x2 = y2 ⇒ x = y it follows (9):

x · x = y · y ⇔ z(x · x) = z(y · y) ⇔ zx · x =

= zy · y ⇔ x · L−1
z x = y · L−1

z y ⇔ x · z1x = y · z1y,

where Lzx = zx, z1 = z−1, since in a loop Moufang L−1
z = Lz−1 (see, for

example,[3]). Thus, x2 = y2 ⇒ x = y implies x · z1x = y · z1y ⇒ L−1
z x =

L−1
z y ⇒ x = y. Analogously, have for (8):

x · x = y · y ⇔ x · xz = y · yz ⇔ R−1
z x · x = R−1

z y · y ⇔ xz2 · x = yz2 · x,

where Rzx = xz, z2 = z−1, since in a loop Moufang R−1
z = Rz−1 . Hence, from

x2 = y2 ⇒ x = y it follows xz2 · x = yz2 · y ⇒ R−1
z x = R−1

z y ⇒ x = y.

(iii) If (Q, ·) is a loop Moufang, then x\z = x−1z, z/x = zx−1, so the quasi-
identity (5) becomes x−1z · x = y−1z · y ⇒ x = y. But by z = e this quasi-
identity does not hold (we have e = e by x 6= y).

(iv) Is a corollary of (ii) if to take into account that a loop Moufang (see, for
example,[6]), as in the case of a group (see [3]), of odd order is diagonal. �
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4 Some quasi-identities with one parameter

In different cases in a quasigroup (Q, ·) quasi-identities (δ-quasi-identities) in
which one permutation δ of Q presents, arise. For example, a quasigroup (Q, ·)
is called admissible if there exists a permutation δ (it is called complete for the
quasigroup (Q, ·)) such that the mapping x → x · δx is also a permutation of Q. If
a quasigroup (Q·) is finite, then a permutation δ is complete if and only if in (Q, ·)
the δ-quasi-identity x · δx = y · δy ⇒ x = y with the permutation δ holds.

In some applications of the quasigroups and loops these quasi-identities also
arise. So, by the study of such detecting coding systems as check character systems
with one control symbol arose a number of quasi-identities with one parameter δ.

A check character (or digit) system with one check character is an error detecting
code over an alphabet Q which arises by appending a check digit an to every word
a1a2 . . . an−1 ∈ Qn−1:

a1a2 . . . an−1 → a1a2 . . . an−1an

(see surveys [7, 8, 10, 17]).

The control digit an can be calculated by different check formulas, in particular,
with the help of a quasigroup (a loop, a group) (Q, ·). One of such formulas with a
quasigroup (Q, ·) is

(. . . (((a1 · δa2) · δ
2a3) · . . .) · δ

n−2an−1) · δ
n−1an = c, (11)

where δ is a fixed permutation on Q, c is a fixed element of Q.

This system can detect the most prevalent errors such as single errors (a → b),
adjacent errors (ab → ba), jump transpositions (acb → bca), twin errors (aa → bb)
and jump twin errors (aca → bcb) if the parameter δ satisfies some conditions.

In [6] the following statement ([6, Theorem 1]) was proved.

Theorem 2 [6]. A check character system using a quasigroup (Q, ·) and coding (11)
for n > 4 is able to detect all

I single errors;

II transpositions if and only if for all a, b, c, d ∈ Q with b 6= c in the quasigroup
(Q, ·) the inequalities

(α1) b · δc 6= c · δb and ab · δc 6= ac · δb (α2)

hold;

III jump transpositions if and only if (Q, ·) has the properties

(β1) bc · δ2d 6= dc · δ2b and (ab · c) · δ2d 6= (ad · c) · δ2b (β2)

for all a, b, c, d ∈ Q, b 6= d;
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IV twin errors if and only if (Q, ·) satisfies the inequalities

(γ1) b · δb 6= c · δc and ab · δb 6= ac · δc (γ2)

for all a, , b, c, d ∈ Q, b 6= c;

V jump twin errors if and only if in (Q, ·) the inequalities

(σ1) bc · δ2b 6= dc · δ2d and (ab · c) · δ2b 6= (ad · c) · δ2d (σ2)

hold for all a, b, c, d ∈ Q, b 6= d.

The following quasi-identities correspond to the inequalities of Theorem 2:

(a1): x · δy = y · δx ⇒ x = y, (a2): zx · δy = zy · δx ⇒ x = y,
(b1): xy · δ2z = zy · δ2x ⇒ x = z, (b2): (ux · y) · δ2z = (uz · y) · δ2x ⇒ x = z,

(c1): x · δx = y · δy ⇒ x = y, (c2): zx · δx = zy · δy ⇒ x = y,
(d1): xy · δ2x = zy · δ2z ⇒ x = z, (d2): (ux · y) · δ2x = (uz · y) · δ2z ⇒ x = z.

Below we shall assume that all these quasi-identities depend on a permutation δ
and shall sometimes call them δ-quasi-identities.

In a loop (Q, ·) (in a quasigroup with the left identity) (a2) ⇒ (a1), (b2) ⇒ (b1),
(c2) ⇒ (c1), (d2) ⇒ (d1). In a group these pairs of quasi-identities are equivalent
(see Proposition 2 of [6]).

In [6] some properties of quasigroups with the pointed inequalities were estab-
lished. In accordance with Proposition 3 and Corollaries 3 and 4 of [6] in a loop
(Q, ·) the following statements are valid if δ = ε (ε is the identity permutation):

1) ε-quasi-identities (a2) and (b2) do not hold;

2) from ε-quasi-identity (d2) ε-quasi-identity (c2) follows;

3) in a loop Moufang (in particular, in a group) all ε-quasi-identities (d1), (d2),
(c1) and (c2) are equivalent;

4) in a finite Moufang loop (in a finite group) ε-quasi-identity (c1) ((c2), (d1)
,(d2)) holds if and only if x2 = y2 ⇒ x = y;

5) in a finite Moufang loop of odd order ε-quasi-identities (c1), (c2), (d1) and (d2)
always hold.

From Corollary 2 and items 3) and 4) it follows

Corollary 3. If in a finite Moufang loop (in a finite group) (Q, ·) ε-quasi-identity
(c1) ((c2), (d1) or (d2)) holds, then this loop is orthogonal to every its parastrophes,
except (Q, (·)∗).

As it was said above, in a loop (a group) ε-quasi-identities (a2) and (b2) can not
hold. But in a quasigroup with the left identity these ε-quasi-identities can hold.
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All examples given below were checked by computer research.

Example 1. The quasigroup (Q, ·) of order 4 on the set Q = {1, 2, 3, 4} with the
left identity 1 in Table 1 satisfies all ε-quasi-identities (a2), (b2), (c2), (d2) (and (a1),
(b1), (c1), (d1) also).

Table 1: Table 2: Table 3:
(·) 1 2 3 4 (·) 1 2 3 4 5 (·) 1 2 3 4 5
1 1 2 3 4 1 1 2 3 4 5 1 1 2 3 4 5
2 3 4 1 2 2 3 4 2 5 1 2 3 1 4 5 2
3 4 3 2 1 3 4 1 5 3 2 3 2 5 1 3 4
4 2 1 4 3 4 5 3 1 2 4 4 5 4 2 1 3

5 2 5 4 1 3 5 4 3 5 2 1

The quasigroup of order 5 with the left identity 1 given in Table 2 satisfies only
ε-quasi-identities (a2), (b2), (c2) (and (a1), (b1), (c1) also).

In the quasigroup of order 5 with the left identity 1 in Table 3 δ-quasi-identities
(a2), (b2), (c2) (and (a1), (b1), (c1)) hold with δ = (14532).

Note that here and below we do not write the first row of permutations in the
natural order.

A loop (a group) can satisfy δ-quasi-identities (a2), (b2) (and (a1), (b1)) if δ 6= ε
as the following example shows.

Example 2. The group of order 4 (of order 5) in Table 4 (in Table 5) satisfies
δ-quasi-identities (a1), (a2), (b1), (b2), (c1), (c2), (d1) and (d2) with δ = (1342)
(δ-quasi-identities (a1), (a2), (b1), (b2), (c1), (c2) with δ = (13524)).

The loop of order 6 in Table 6 satisfies δ-quasi-identities (a1), (a2) with δ =
(213456).

Table 4: Table 5:
(·) 1 2 3 4 (·) 1 2 3 4 5
1 1 2 3 4 1 1 2 3 4 5
2 2 1 4 3 2 2 3 4 5 1
3 3 4 1 2 3 3 4 5 1 2
4 4 3 2 1 4 4 5 1 2 3

5 5 1 2 3 4

Table 6:
(·) 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 6 5 3 4 1
3 3 5 6 1 2 4
4 4 3 2 6 1 5
5 5 4 1 2 6 3
6 6 1 4 5 3 2
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In [6, Corollary 1] it was also proved that if a finite quasigroup (Q, ·) satisfies
conditions (γ2) ((σ1) or (σ2)), then this quasigroup has orthogonal mate. This means
that if in a finite quasigroup (Q, ·) δ-quasi-identity (c2) ((d1) or (d2)) holds, then it
has orthogonal mate.

In addition now we shall establish some other orthogonalities which are connected
with a quasigroup (Q,A) with δ-quasi-identity (c2) ((d1) or (d2)).

Proposition 3. In a finite quasigroup (Q,A)

(i) δ-quasi-identity (c2) holds if and only if A(ε,δ,ε) ⊥ −1A;

(ii) δ-quasi-identity (d1) holds if and only if A(ε,δ2,ε) ⊥ (−1A)−1;

(iii) δ-quasi-identity (d2) holds if and only if A(ε,δ2L−1
u ,ε) ⊥ (−1A)−1 for any u ∈ Q.

Proof. (i) Let B = A(ε,δ,ε), that is B(x, y) = A(x, δy) by the definition of iso-
topic quasigroups. By the criterion of Belousov B ⊥−1 A if and only if B ◦ A is
a quasigroup. But (B ◦ A)(z, x) = B(A(z, x), x) = A(A(z, x), δx), so B ◦ A is a
quasigroup if and only if (B ◦ A)(z, x) = (B ◦ A)(z, y) ⇒ x = y or A(A(z, x), δx) =
A(A(z, y), δy) ⇒ x = y. It is δ-quasi-identity (c2).

(ii) Let B(x, y) = A(x, δ2y), then B ⊥ (−1A)−1 if and only if B◦A∗ is a quasigroup,
that is if and only if B(A(x, y), x) = B(A(z, y), z) ⇒ x = z or (d1) holds.

(iii) Let C = A(ε,δ2L−1
u ,ε), that is C(x, y) = A(x, δ2L−1

u y), then C ⊥ (−1A)−1 if and
only if C ◦−1 ((−1A)−1) = C ◦ A∗ is a quasigroup. This is valid if and only if
(C ◦ A∗)(y, x) = (C ◦ A∗)(y, z) ⇒ x = z or C(A(x, y), x) = C(A(z, y), z) ⇒
x = z, that is A(A(x, y), δ2L−1

u x) = A(A(z, y), δ2L−1
u z) ⇒ x = z or

A(A(Lux, y), δ2x) = A(A(Luz, y), δ2z) ⇒ Lux = Luz ⇒ x = z. It is δ-
quasi-identity (d2). �

From Proposition 3 it immediately follows (see also Theorem 1 concerning quasi-
identities (2) and (8))

Corollary 4. In a finite quasigroup (Q,A)

(i) ε-quasi-identity (c2) holds if and only if A ⊥−1 A;

(ii) δ-quasi-identity (d1) with δ2 = ε holds if and only if A ⊥ (−1A)−1;

(iii) δ-quasi-identity (d2) with δ2 = ε holds if and only if A(ε,L−1
u ,ε) ⊥ (−1A)−1 for

any u ∈ Q.

As it was said above, in a loop from the ε-quasi-identity (d2) the quasi-identity
(c2) follows, so from Corollary 4 it follows

Corollary 5. If in a finite loop (Q,A) ε-quasi-identity (d2) holds, then A ⊥−1 A
and A ⊥ (−1A)−1.

Proposition 4. Let (Q, ·) be a finite group. Then
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(i) if δ is a complete permutation of (Q, ·) then −1(·) ⊥ (·)Ta for every a ∈ Q,
where Ta = (ε, δLa, ε);

(ii) if in (Q, ·) (d1) holds, then −1(·) ⊥ (·)Ta,b,c for all a, b, c ∈ Q, where Ta,b,c =
(ε, δ2LaRbLc, ε).

Proof. (i) By the condition of (i) in a group (Q, ·) the δ-quasi-identity (c1) holds, but
then (c2) also holds for any z = Ia (I : x → x−1), since in a group δ-quasi-identity
(c1) is equivalent to (c2), that is LIax·δx = LIay ·δy ⇒ x = y or x·δLax = y ·δLay ⇒
Lax = Lay (or x = y), since in a group L−1

a = LIa. Thus, x · δ1x = y · δ1y ⇒ x = y,
where δ1 = δLa. By Proposition 3 −1(·) ⊥ (·)Ta , where Ta = (ε, δ1, ε).

(ii) Let in (Q, ·) (d1) hold, then (d2) is valid also, so for any a, b ∈ Q we have
((Ia·x)·Ib)·δ2x = ((Ia·z)·Ib)·δ2z ⇒ x = z or RIbLIax·δ

2x = RIbLIaz ·δ
2z ⇒ x = z,

whence it follows that x · δ2LaRbx = z · δ2LaRbz ⇒ x = z or x · δx = z · δz → x = z,
where δ = δ2LaRb. By item (i) of this Proposition −1(·) ⊥ (·)Ta,b,c with Ta,b,c =
(ε, δ2LaRbLc, ε) for any a, b, c ∈ Q. �

5 Equivalence of some quasi-identities with one parameter

A quasigroup (Q, ·) can satisfy some δ-quasi-identities from (a1) − (d2) with
distinct permutations δ. A part of such permutations can be obtained from the
permutation δ of a δ-quasi-identity with the help of the group of automorphisms of
a quasigroup.

In [5] for quasigroups by analogy with groups (see [16]) the following transfor-
mation of δ with the help of an automorphism was introduced.

Definition 1 [5]. A permutation δ1 is called automorphism equivalent to a permu-
tation δ (δ1 ∼ δ) for a quasigroup (Q, ·) if there exists an automorphism α of (Q, ·)
such that δ1 = αδα−1.

Proposition 1 of [5] can be reformulated for δ-quasi-identities in the following
way taking into account Theorem 1.

Proposition 5. (i) Automorphism equivalence of permutations is an equivalence
relation (that is reflexive, symmetric and transitive).

(ii) If a quasigroup (Q, ·) satisfies the δ-quasi-identity (a1) ((a2), (b1), (b2), (c1),
(c2), (d1) or (d2)) and a permutation δ1 is an automorphism equivalent to δ, then
in (Q, ·) the respective δ1-quasi-identity holds.

More general transformation of permutations can be considered in a loop with
a nonempty nucleus. So, in [5] for a loop a weak equivalence was introduced by
analogy with a group (see [16]).

Recall that the nucleus N of a loop is the intersection of the left, right and middle
nuclei:

N = Nl ∩ Nr ∩ Nm,



30 G. BELYAVSKAYA, A. DIORDIEV

where

Nl = {a ∈ Q | ax · y = a · xy for all x, y ∈ Q},
Nr = {a ∈ Q | x · ya = xy · a for all x, y ∈ Q},
Nm = {a ∈ Q | xa · y = x · ay for all x, y ∈ Q}.

All these nuclei are subgroups in a loop [3]. In a group (Q, ·) the nucleus N coincides
with Q.

Definition 3. A permutation δ1 of a set Q is called weakly equivalent to a permu-
tation δ (δ1

w
∼ δ) for a loop (Q, ·) with the nucleus N if there exist an automorphism

α (α ∈ Aut(Q, ·)) of the loop and elements p, q ∈ N such that δ1 = Rpαδα−1Lq,
where Rpx = xp, Lqx = qx
(the permutations act to the left from the right).

Note that if δ is a complete permutation in a loop with nucleus N , then
δ1 = Rpαδα−1Lq is also complete, where α ∈ Aut(Q, ·), p, q ∈ N .

Proposition 2 of [5] can be reformulated for the δ-quasi-identities in the following
way.

Proposition 6. a) Weak equivalence is an equivalence relation for a loop.

b) If in a loop (Q, ·) the δ-quasi-identity (a1) ((a2), (c1) or (c2)) holds and the
δ1

w
∼ δ, then this loop satisfies the respective δ1-quasi-identities also.

c) If, in addition, δ is an automorphism of (Q, ·) and δ-quasi-identity (a1) ((a2),
(b1), (b2), (c1), (c2), (d1) or (d2)) holds, then the corresponding δ1-quasi-
identity holds too.

According to Corollary 2 of [5] in a Moufang loop of odd order with the nucleus
N the δ-quasi-identities (c1), (c2), (d1), (d2) by δ = RpLq, p, q ∈ N , always hold
(the respective ε-quasi-identities hold too).

In [5] an example of a loop of order 8 with the nucleus of four elements and with
the group of automorphisms of order 4, some permutations and weak equivalent
permutations to these permutations which satisfy the quasi-identities (c2) were given.
Here we give a loop of order 9 with the nucleus of three elements and with the group
of automorphisms of order 6.

Example 3. The loop (Q, ·) of order 9 on the set Q = {1, 2, 3, 4, 5, 6, 7, 8, 9} with
the identity 1 is given in Table 7.
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Table 7:
(·) 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 2 3 1 5 6 4 8 9 7
3 3 1 2 6 4 5 9 7 8
4 4 5 6 8 9 7 2 3 1
5 5 6 4 9 7 8 3 1 2
6 6 4 5 7 8 9 1 2 3
7 7 8 9 2 3 1 5 6 4
8 8 9 7 3 1 2 6 4 5
9 9 7 8 1 2 3 4 5 6

A computer research has shown that this loop has the following group of auto-
morphisms of order 6:

AutQ = {(123456789), (123789456), (123645897), (123897645),

(123564978), (123978564)}

and the nucleus N = Nr = {1, 2, 3}.
This loop satisfies the quasi-identities (c2) and (d2) with the permutation δ0 =

(123456897) and with the following permutations which are weakly equivalent to δ0

(that is have the form Rpαδ0α
−1Lq, where α ∈ Aut(Q, ·), p, q ∈ N): (123456897),

(231564978), (312645789), (123564789), (231645897), (312456978).
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