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Abstract. In this article we consider some quasi-identities in quasigroups, in partic-
ular, quasi-identities connected with parastrophic orthogonality of a quasigroup. We
also research some quasi-identities in quasigroups (in loops) with one parameter § (9-
quasi-identities) which arose by the study of detecting coding systems such as check
character systems in [6] (see also [5,7]), establish equivalence of such quasi-identities,
connection of some of them with orthogonality of quasigroups and give a number of
examples of finite quasigroups with such §-quasi-identities.
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1 Introduction

It is known that the concept of a quasi-identity (or a conditional identity [1,11,
12]) in an algebraic system is a generalization of the concept of an identity and is
used by the study of different algebraic systems, in particular, groups, semigroups.

A quasi-identity (or a conditional identity) is a formula of the form
(Vz1)...(Vop) (w1 =1 & ... & Uy = vy = u=10)

where u,v,u;,v; (i =1,2,...,m) are words in the alphabet {z1,zo,...,2z,}.
By writing of quasi-identities the quantor prefix usually is omitted. Each identity
u = v can be changed by the quasi-identity z = x = u = v.

Some classes of algebraic systems are given by means of quasi-identities. So,
groupoids, in particular semigroups (@, -) with the left (right) cancelation are defined
by the quasi-identity ca = ¢b = a = b (ac = bc = a = b) in a groupoid (in
a semigroup) (@,-). The known class of separative semigroups is defined by the
following quasi-identity: a? = ab = b> = a = b. The class of finite groups is simply
the class of semigroups with left and right cancelation.

The concept of a quasi-identity lies in the base of definition of a quasi-variety of
algebraic systems. So, the class of semigroups with the two-sided cancelation (the
class of separative semigroups) forms a quasi-variety [1].
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Different quasi-identities arise also in quasigroups and loops. So, a definition
and some properties of finite quasigroups can be given by means of quasi-identities.

So, a finite quasigroup (@, -) can be defined as a groupoid with the right and the
left cancelations, that is with the quasi-identities:

rz=yz=>x=yand zx =2y = = y.

For a finite qroupoid the right (left) cancelation is equivalent to left (right)
invertibility.

A quasigroup (Q,) is called diagonal [9] if the mapping z — z -z = 22 is a
permutation (bijection) on (. In the case of a finite quasigroup this means that in

such quasigroup the quasi-identity z? = y?> = = = y holds.

A quasigroup (Q, ) is called anti-commutative [3] if zy # yx for = # y, that is
the quasi-identity ry = yr = x = y holds.

A quasigroup of Stein (Q,-) (that is a quasigroup with the identity z - zy = yx)
is an example of anti-commutative quasigroup: if xy = yx, then z-zy = zy, zy = v,
x = y, since a quasigroup of Stein is idempotent (that is 22 = z for each z € Q).
A quasigroup is called anti-abelian if xy = 2zt and yx = tz imply x = z and y = t.
Such a quasigroup is anti-commutative also [15].

In this article we consider some other quasi-identities in quasigroups, in particu-
lar, quasi-identities connected with parastrophic orthogonality of a quasigroup. We
also research some quasi-identities in quasigroups (in loops) with one parameter §
(0-quasi-identities), which arose by the study of coding systems such as check char-
acter systems in [6] (see also [5,7]), establish equivalence of such quasi-identities,
connection of some of them with orthogonality of quasigroups and give a number of
examples of finite quasigroups with these J-quasi-identities.

2 Some necessary notions and results

A binary quasigroup is a particular case of a groupoid.
A groupoid (Q,-) is a set @ with some binary operation (-).

A groupoid (Q,-) with the right (left) cancelation is a groupoid such that in it
the following quasi-identities hold: za = ya = = =y (az = ay = x = y).

A quasigroup (Q,-) is a groupoid in which every of the equations ax = b and
xza = b has a unique solution for any a,b € Q. In other words, a quasigroup is a
groupoid which is invertible to the right and to the left.

A quasigroup (Q, -) is finite of order n if the set @ is finite and |Q| = n.

A quasigroup (Q,-) with a left identity f (right identity e) is a quasigroup such
that fx =z (xe = x) for every = € Q.

A loop (Q,-) is a quasigroup with the identity e: ze = ex = z for each z € Q.
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A loop (Q,-) is called a loop Moufang if it satisfies the identity (zx - y) - x =
z(z - yx).

The primitive quasigroup (Q,-,\, /), where z-y < z/y = x, x\z = y, corresponds
to every quasigroup (Q, ).

If for the designation of a quasigroup operation () the letter A is used, then
a primitive quasigroup (Q, A, A71,7tA), where A(x,y) = 2z & A l(x,2) = y,
~1A(z,y) = z corresponds to a quasigroup (Q,A). The operations A~!, ~!A (or
(\), (/)) are also quasigroup operations which are called the right, left inverse oper-
ations for A (for (-)) respectively.

A quasigroup (Q, B) is isotopic to a quasigroup (Q, A) if there exists a tuple
T = (a,f,7) of permutations on @ such that B(z,y) = v 'A(ax,Bz) (shortly,
B = A(OC?ﬁv’\f) = AT)'

With any quasigroup operation A five parastrophes (or conjugate operations) are
connected

AT A (T T AT and AT (=TH((CIA)TH = (ClAaTh) ),
where A*(x,y) = A(y,x) [3].

Definition 1 [2]. Two operations A and B, given on a set Q, are called orthogonal
(shortly, A L B) if the system of equations {A(z,y) = a, B(z,y) = b} has a unique
solution for all a,b € Q.

Let @ be a finite or infinite set, A and B be operations on @), then the right
(left) multiplication A - B (A o B) of Mann is defined in the following way:

(A- B)(x,y) = Az, B(x,y)), (Ao B)(x,y) = A(B(z,),y).

All invertible to the right (to the left) operations on a set @ form a group with
respect to the right (left) multiplication of Mann [13].

According to the criterion of Belousov [4] two quasigroups (@, A) and (Q, B)
are orthogonal if and only if the operation A- B~ (4 0~ ! B) is a quasigroup.

3 Parastrophic orthogonality of quasigroups and quasi-identities

A quasigroup (@, A) can be orthogonal with some its parastrophes. As it was
proved by G. Mullen and V. Shcherbacov in [14], conditions for this orthogonality of
finite quasigroups can be expressed by quasi-identities in the corresponding primitive
quasigroup (Q, A=, 71 A). We shall give some his quasi-identities and other ones ob-
tained with the help of the Belousov’s criterion of orthogonality of two quasigroups.

Proposition 1. Let (Q, A) be a finite quasigroup, (Q,-, A=1, 7L A) be the correspond-
ing primitive quasigroup. Then

ALA o Az, Az, 2) = Ay, Ay, 2)) = = =y, (1)



22 G. BELYAVSKAYA, A. DIORDIEV

ALYA s A(A(z,2),2) = A((2,y),y) = =z =y, (2)

AL (A e Az, P Az, 2) = A(y, YAy, 2) = 2 =, (3)
ALY A Y e AA Yz, 2),2) = A(A N (2,y),y) =z =y, (4)
AL A & A(A (2, 2),2) = A(A N (y,2),y) = 2 =y. (5)

Proof. By the criterion of Belousov A L A~! if and only if the operation (A -
(A71)71) = A . A is a quasigroup. It is valid if and only if the quasi-identity (1)
holds, since the operation A - A is always invertible from the right.

A 171 Aif and only if Ao~ !(7!A) = Ao A is a quasigroup, that is the quasi-
identity (2) is valid if we take into account that the operation A o A is always
invertible to the left.

By the criterion, A L (7!4)~! if and only if the invertible from the right operation
A-((F1A)7H)~ = A.71 A is a quasigroup, that is invertible from the left. It is valid
if and only if the quasi-identity (3) holds.

Analogously, A 1 =1(A™!) if and only if the invertible from the left operation
Ao (7{(A71)) = Ao A~ ! is a quasigroup, that is the quasi-identity (4) holds.

At last, A L A*ifand only if A*-A~! is a quasigroup, that is the quasi-identity (5)
holds. O

Proposition 2. Let (Q,-,\,/) be a finite primitive quasigroup. Then
the quasi-identity (1) is equivalent to the quasi-identity

A(TMA(z, 2), ) = A(T'A(y. 2),y) = = =y, (6)

the quasi-identity (2) is equivalent to the quasi-identity
Ale, A7 (z,2) = Aly, A (z,y) > 2 =y, (7)

the quasi-identity (3) is equivalent to the quasi-identity
A(A(z, 2),2) = A(A(y, 2),y) = = =y, (8)

the quasi-identity (4) is equivalent to the quasi-identity
Az, Az, 1)) = Ay, A(z,y)) = = =y, (9)

the quasi-identity (5) is equivalent to the quasi-identity
Az, LAz, 2)) = Ay, YAz, y)) = 2 =v. (10)
Proof. Indeed, A 1 A~! by the criterion of Belousov if and only if Ao~!(A7!)is a

quasigroup. But (Ao 1 (A7) (z,2) = A(TY AV (2, 2),2) = A("A(z, 2),z), since
AN (2,2) =1 A(z,2). So Ao"1(A™!) is a quasigroup if and only if (6) holds.



ON SOME QUASI-IDENTITIES IN FINITE QUASIGROUPS 23

A 17V Aif and only if A-(7'A)~! is a quasigroup. Taking into account that
(A Yx,2) = A7Y(z,2) we have (A - (TPA)"V(z,2) = Az, (T1A) "z, 2)) =
Az, A71(2,2)). So A-(71A)~! is a quasigroup if and only if (7) holds.

A 1L (7'A)~tif and only if Ao~1((71A)~!) = Ao A* is a quasigroup, that is the
quasi-identity A(A*(z,x),z) = A(A*(z,y),y) = = =y or (8) holds.

A 171 (A7) if and only if A- (TYA71))"! = A . A* is a quasigroup. This
condition is equivalent to the quasi-identity (9).

A* 1 A if and only if A* o~1 A is a quasigroup if and only if the quasi-identity
A*(T1A(z,2),2) = A*(T'A(2,y),y) = x = y or (10) holds. O

Using the designation (-) for an operation A we can write the quasi-identities
(1)-(10),respectively, in the following way (we use the same numeration for them) :

T-xZz=Y Yz =x =1y, (1)
2xx=z2Yy-Yy=>x =1y, (2)
w-(x/z) =y (y/2) =z =y, (3)
(2\z) -z =(2\y) -y =z =y, (4)
(@\2) -z =(y\2) -y =z =y, (5)
(x/2) -z =(y/z) -y =2z =y, (6)
z-(2\r) =y (2\y) =z =y, (7)
TZ-T =Yz -y=1x=1y, (8)
Tozr=y-zy=1x =y, 9)

)

z-(z/x) =y (2/y) =z =y. (10

Note that the quasi-identities (1), (2), (8) and (9) were obtained in [14].
From Proposition 1 and 2 it follows at once

Theorem 1. Let (Q,-) be a finite quasigroup. Then

OV leraz=yyrr=ys(/z) 2= (y/z) y=>z=y,
ezo=zwy=r=yer (\r)=y (2\y) >z=y,

CO) e (@/)=y ) zr=yerz o=y y=>s=y,

e @R\e)e=0E\y) y=r=ysr =y 2y=>z=1y,

() e @\2)z=0\2)y=v=yeoz (z/z)=y (z/y) =z =y

|—|—||—

Corollary 1. Let (Q, A) be a finite commutative quasigroup. Then

(i) all quasi-identities (1)-(4),(6)-(9) are equivalent;
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(ii) each one of the first four parastrophic orthogonalities of Theorem 1 implies the
rest of these orthogonalities.

Proof. In the case of a commutative quasigroup (that is zy = yz for all z,y € Q)
it is easy to see that

(1) & (2) & (8) & (9).
Item (ii) follows from this fact and Theorem 1. O

In a finite commutative quasigroup the quasi-identities (5) and (10) do not hold,
since (+) and (-)* = (-) are not orthogonal.

Corollary 2. Let (Q,-) be a finite loop Moufang (in particular, a finite group).
Then
(i) if in (Q,-) one of the quasi-identities (1)-(4), (6)-(9) holds, then (Q,-) is

diagonal;

(i) of (Q,-) is diagonal, then (1) & (2) < (8) < (9) and (Q,-) is orthogonal to
each of its parastrophes, except (Q,(-)*);

(iii) (Q,-) is not orthogonal to (Q,(-)*);

(iv) a loop Moufang (Q,-) of odd order is orthogonal to each of its parastrophes,
except (Q, (-)").
Proof. (i) Let (1) ((2), (8) or (9)) hold in a finite loop Moufang, then by z = e (e

is the identity of the loop) we have that #2 = y? = x = y. The rest quasi-identities,
except (5) and (10), are equivalent to one of these quasi-identities by Theorem 1.

(ii) Let (Q,-) be diagonal, that is 22 = y? = = = y, then (1) and (2) also hold,
since a loop Moufang is diassociative (that is each two elements generate a
subgroup) [3]. Show that from 2% = y? = = = y it follows (9):

rr=y-yesz(rox)=z2y-y) S zr-r=

:zy'y@m-Lglx:y'Lgly@x-zlx:y'zly,

where L,x = zx, 21 = 2z~ !, since in a loop Moufang L;! = L, 1 (see, for

example,[3]). Thus, 22 = y? = x = y implies z - 217 = y - 21y = L 'w =
L'y = 2 = y. Analogously, have for (8):

x-x:y-y®x~xz:y-yz@Rz_lx-m:Rz_ly-y@)x?Jg-x:yZQ-x,

where R,z = xz, zp = 27!, since in a loop Moufang R; ! = R,-1. Hence, from

> =y’ =z =yitfollows w20 -2 =yze -y = R \x =R 'y =z =y.

(iii) If (@,-) is a loop Moufang, then x\z = 7'z, z/x = zx~!, so the quasi-

identity (5) becomes 27 'z -z =y 2.y = 2 = y. But by z = e this quasi-
identity does not hold (we have e = e by x # y).

(iv) Is a corollary of (ii) if to take into account that a loop Moufang (see, for
example,[6]), as in the case of a group (see [3]), of odd order is diagonal. [
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4 Some quasi-identities with one parameter

In different cases in a quasigroup (Q,-) quasi-identities (d-quasi-identities) in
which one permutation 6 of ) presents, arise. For example, a quasigroup (@, )
is called admissible if there exists a permutation § (it is called complete for the
quasigroup (@, -)) such that the mapping = — x - dz is also a permutation of Q. If
a quasigroup (Q-) is finite, then a permutation 0 is complete if and only if in (@, -)
the §-quasi-identity x - dx = y - 0y = = = y with the permutation § holds.

In some applications of the quasigroups and loops these quasi-identities also
arise. So, by the study of such detecting coding systems as check character systems
with one control symbol arose a number of quasi-identities with one parameter 0.

A check character (or digit) system with one check character is an error detecting
code over an alphabet ) which arises by appending a check digit a,, to every word
aias...ap—1 € Q"L

aiag...ap—1 — @102 ...0npn—-10n

(see surveys [7,8,10,17]).

The control digit a, can be calculated by different check formulas, in particular,
with the help of a quasigroup (a loop, a group) (@, ). One of such formulas with a
quasigroup (@, -) is

(... (((a1 - dag) - 82%az) - ...) - 8" 2an_1) - 8" ta, = c, (11)

where 0 is a fixed permutation on @, c is a fixed element of Q.

This system can detect the most prevalent errors such as single errors (a — b),
adjacent errors (ab — ba), jump transpositions (acb — bca), twin errors (aa — bb)
and jump twin errors (aca — beb) if the parameter 0 satisfies some conditions.

In [6] the following statement ([6, Theorem 1]) was proved.

Theorem 2 [6]. A check character system using a quasigroup (Q,-) and coding (11)
forn >4 is able to detect all

1 single errors;

IT transpositions if and only if for all a,b,c,d € Q with b # c in the quasigroup
(Q,-) the inequalities

(1) b-dc#c-db and ab-dc# ac- b (2)

hold;

IIT jump transpositions if and only if (Q,-) has the properties
(61) be-62d #dc-6*b  and  (ab-c)-6%d # (ad - c) - 62b (B2)

for all a,b,c,d € Q, b+#d;
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IV twin errors if and only if (Q,-) satisfies the inequalities
(71) b-0b#c-6c and ab-0b+# ac-dc (72)

for all a,,b,c,d € Q, b+ c;
V jump twin errors if and only if in (Q,-) the inequalities
(o1) be-6%b # dc-6%d  and  (ab-c)-8%b # (ad - c) - §%d (02)
hold for all a,b,c,d € @, b #d.
The following quasi-identities correspond to the inequalities of Theorem 2:

(a1): z-dy=y-dx =z =1y, (ag): zx -0y = zy - dx = = =y,

(b1): 2y - 622 = 2y - 8%x = = = 2, (bo): (uw-y) 6%z = (uz-y)- 8%z = o = z,
(1) xz-dx =y -0y =>xz=uy, (co): zx-dx =2y -0y = x =y,

(d1): 2y - 6% = 2y - 6%2 = = = 2, (do): (uz-y)- 6%z = (uz-y) 0%z =z = 2.

Below we shall assume that all these quasi-identities depend on a permutation &
and shall sometimes call them §-quasi-identities.

In a loop (Q,-) (in a quasigroup with the left identity) (a2) = (a1), (b2) = (b1),
(c2) = (c1), (d2) = (d1). In a group these pairs of quasi-identities are equivalent
(see Proposition 2 of [6]).

In [6] some properties of quasigroups with the pointed inequalities were estab-
lished. In accordance with Proposition 3 and Corollaries 3 and 4 of [6] in a loop
(@, -) the following statements are valid if 6 = ¢ (¢ is the identity permutation):

1) e-quasi-identities (a2) and (b2) do not hold,;
2) from e-quasi-identity (d2) e-quasi-identity (c2) follows;

3) in a loop Moufang (in particular, in a group) all e-quasi-identities (dy), (d2),
(c1) and (cg) are equivalent;

4) in a finite Moufang loop (in a finite group) e-quasi-identity (c1) ((c2), (d1)
,(d2)) holds if and only if 22 = 4% = z = y;

5) in a finite Moufang loop of odd order e-quasi-identities (c1), (c2), (d1) and (d2)
always hold.

From Corollary 2 and items 3) and 4) it follows

Corollary 3. If in a finite Moufang loop (in a finite group) (Q,-) e-quasi-identity
(c1) ((c2), (d1) or (d2)) holds, then this loop is orthogonal to every its parastrophes,
except (Q, (-)*).

As it was said above, in a loop (a group) e-quasi-identities (a2) and (b2) can not
hold. But in a quasigroup with the left identity these e-quasi-identities can hold.
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All examples given below were checked by computer research.
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Example 1. The quasigroup (@,-) of order 4 on the set Q = {1,2,3,4} with the
left identity 1 in Table 1 satisfies all e-quasi-identities (az), (b2), (c2), (d2) (and (a1),

(b1), (c1), (dy) also).

Table 1: Table 2: Table 3:
()]1 2 3 4 ()1 2 3 4 5 ()|1 2 3 4 5
1|1 2 3 4 1|1 2 3 45 1|1 2 3 45
213 4 1 2 2 13 4 2 5 1 213 1 4 5 2
314 3 2 1 314 1 5 3 2 312 5 1 3 4
412 1 4 3 415 3 1 2 4 415 4 2 1 3

512 5 4 1 3 514 3 5 2 1

The quasigroup of order 5 with the left identity 1 given in Table 2 satisfies only

e-quasi-identities (az2), (b2), (c2) (and (a1), (b1), (c1) also).

In the quasigroup of order 5 with the left identity 1 in Table 3 d-quasi-identities
(az), (b2), (c2) (and (a1), (b1), (c1)) hold with § = (14532).
Note that here and below we do not write the first row of permutations in the

natural order.

A loop (a group) can satisfy d-quasi-identities (a2), (b2) (and (a1), (b1)) if § # ¢
as the following example shows.

Example 2. The group of order 4 (of order 5) in Table 4 (in Table 5) satisfies
0-quasi-identities (a1), (a2), (b1), (b2), (c1), (c2), (d1) and (d2) with § = (1342)

(0-quasi-identities (a1), (a2), (b1), (b2), (c1), (c2) with § = (13524)).

The loop of order 6 in Table 6 satisfies d-quasi-identities (a1), (a2) with 6 =

(213456).

Table 4: Table 5:
()]1 2 3 4 ()1 2 3 4 5
111 2 3 4 1|1 2 3 45
212 1 4 3 212 3 4 5 1
313 4 1 2 313 4 5 1 2
414 3 2 1 414 5 1 2 3
5105 1 2 3 4

Table 6:

()]1 2 3 4 5 6

111 2 3 4 5 6

212 6 5 3 4 1

313 5 6 1 2 4

414 3 2 6 15

515 4 1 2 6 3

6 |6 1 4 5 3 2
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In [6, Corollary 1] it was also proved that if a finite quasigroup (Q,-) satisfies
conditions (v2) ((o1) or (02)), then this quasigroup has orthogonal mate. This means
that if in a finite quasigroup (@, -) d-quasi-identity (c2) ((d1) or (d2)) holds, then it
has orthogonal mate.

In addition now we shall establish some other orthogonalities which are connected
with a quasigroup (@, A) with d-quasi-identity (c2) ((d1) or (d2)).

Proposition 3. In a finite quasigroup (Q, A)
(i) d-quasi-identity (co) holds if and only if A% 1 —1A;
(ii) 8-quasi-identity (di) holds if and only if A< 1 (—14)~1;

(iii) 0-quasi-identity (d2) holds if and only if AESLate) | (TA)~! for any u € Q.

Proof. (i) Let B = A% that is B(x,y) = A(z,dy) by the definition of iso-
topic quasigroups. By the criterion of Belousov B L~! A if and only if B o A is
a quasigroup. But (B o A)(z,z) = B(A(z,z),z) = A(A(z,x),0x), so Bo Ais a
quasigroup if and only if (Bo A)(z,z) = (Bo A)(z,y) = x =y or A(A(z,x),dz) =
A(A(z,y),0y) = x = y. It is d-quasi-identity (c2).
(i) Let B(z,y) = A(x,6%y), then B L (71A)~1 if and only if Bo A* is a quasigroup,
that is if and only if B(A(z,y),z) = B(A(z,y),2) = x = z or (d1) holds.

(iii) Let C' = AE9°La"9) that is C(z,y) = A(x,62L;y), then C L (“1A)~1 if and
only if C o71((7!A)~!) = C o A* is a quasigroup. This is valid if and only if
(Co A%)(y,2) = (C o A%)(g,2) = = = = or C(A(z,9),7) = C(A(z,y), ) =
r = z that is A(A(x,y),62L x) = A(A(z,y),6°L;'2) = = = z or
A(A(Lyz,y),6%x) = A(A(Ly2,9),0%2) = Lyx = L,z = x = z. It is 6-
quasi-identity (d2). O

From Proposition 3 it immediately follows (see also Theorem 1 concerning quasi-
identities (2) and (8))
Corollary 4. In a finite quasigroup (Q, A)
(i) e-quasi-identity (c2) holds if and only if A 1 =1 A;
(ii) 6-quasi-identity (d1) with 6% = ¢ holds if and only if A L (T1A)~%;

(iii) 0-quasi-identity (do) with 6% = & holds if and only if ALute) | (~tA)~L for
any u € Q.

As it was said above, in a loop from the e-quasi-identity (d2) the quasi-identity
(c2) follows, so from Corollary 4 it follows

Corollary 5. If in a finite loop (Q,A) e-quasi-identity (d3) holds, then A 1 =1 A
and A L (T1A)7L,

Proposition 4. Let (Q,-) be a finite group. Then
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(i) if 6 is a complete permutation of (Q,-) then ~(-) L (-)Te for every a € Q,
where T, = (¢,0Lq,¢€);

(ii) if in (Q,-) (d1) holds, then ~1(-) L (-)Tave for all a,b,c € Q, where Typ. =
(8,52LaRch,€).

Proof. (i) By the condition of (i) in a group (@, -) the J-quasi-identity (c1) holds, but
then (c2) also holds for any z = Ia (I : & — 2~!), since in a group J-quasi-identity
(c1) is equivalent to (c2), that is Ly,x-0x = Ligy-0y = x =y or z-6L,x = y-0L,y =
Loz = Loy (or x = y), since in a group L, = Ly,. Thus, z- 612 =y - 61y = = = v,
where §; = 0L,. By Proposition 3 ~1(-) L ()%=, where T, = (¢,d1,¢).

(ii) Let in (Q,-) (d1) hold, then (ds) is valid also, so for any a,b € Q) we have
((Ia-x)-1b)-0%r = ((Ia-2)-1b)-6%2 = x = z or RppL1ax-6%°x = RppLia2-0%2 = o = 2,
whence it follows that - 6?LoRyxr = 2 - 0°LoRyz = c=z0r -0x = 2-02 — & = 2,
where § = 02L,Ry,. By item (i) of this Proposition ~1(-) L (-)Tete with Tope =
(¢,62LyRyLe,€) for any a,b,c € Q. O

5 Equivalence of some quasi-identities with one parameter

A quasigroup (Q,-) can satisfy some J-quasi-identities from (a;) — (d2) with
distinct permutations §. A part of such permutations can be obtained from the
permutation § of a d-quasi-identity with the help of the group of automorphisms of
a quasigroup.

In [5] for quasigroups by analogy with groups (see [16]) the following transfor-
mation of § with the help of an automorphism was introduced.

Definition 1 [5]. A permutation 61 is called automorphism equivalent to a permu-
tation § (61 ~ &) for a quasigroup (Q,-) if there exists an automorphism o of (Q,-)
such that §; = ada™ 1.

Proposition 1 of [5] can be reformulated for d-quasi-identities in the following
way taking into account Theorem 1.

Proposition 5. (i) Automorphism equivalence of permutations is an equivalence
relation (that is reflexive, symmetric and transitive).

(i) If a quasigroup (Q,-) satisfies the 0-quasi-identity (a1) ((a2), (b1), (b2), (c1),
(c2), (d1) or (d2)) and a permutation 01 is an automorphism equivalent to §, then
in (Q,-) the respective 61-quasi-identity holds.

More general transformation of permutations can be considered in a loop with
a nonempty nucleus. So, in [5] for a loop a weak equivalence was introduced by
analogy with a group (see [16]).

Recall that the nucleus N of a loop is the intersection of the left, right and middle

nuclei:
N =N, NN, NNy,
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where

N={aeQ|ax-y=a-zyforall z,y € Q},
N, ={a€@Q |z ya=2ay-aforall z,y € Q},
Np={a€Q|za-y=x-ayforal z,y € Q}.

All these nuclei are subgroups in a loop [3]. In a group (Q, -) the nucleus N coincides
with Q.

Definition 3. A permutation 61 of a set Q is called weakly equivalent to a permu-
tation § (8 ~ ) for a loop (Q,-) with the nucleus N if there exist an automorphism
a (a € Aut(Q,-)) of the loop and elements p,q € N such that 61 = Ryada'L,,
where Ryx = xp, Lyw = qx

(the permutations act to the left from the right).

Note that if § is a complete permutation in a loop with nucleus N, then
81 = Rpada™1L, is also complete, where o € Aut(Q,), p,q € N.

Proposition 2 of [5] can be reformulated for the §-quasi-identities in the following
way.

Proposition 6. a) Weak equivalence is an equivalence relation for a loop.

b) If in a loop (Q,-) the §-quasi-identity (a1) ((a2), (c1) or (c2)) holds and the

81 ~ 8, then this loop satisfies the respective 81 -quasi-identities also.

c) If, in addition, ¢ is an automorphism of (Q,-) and d-quasi-identity (a1) ((az2),
(b1), (b2), (c1), (c2), (d1) or (d2)) holds, then the corresponding d1-quasi-
identity holds too.

According to Corollary 2 of [5] in a Moufang loop of odd order with the nucleus
N the d-quasi-identities (c1), (¢c2), (d1), (d2) by 6 = RyLy, p,q € N, always hold
(the respective e-quasi-identities hold too).

In [5] an example of a loop of order 8 with the nucleus of four elements and with
the group of automorphisms of order 4, some permutations and weak equivalent
permutations to these permutations which satisfy the quasi-identities (co) were given.
Here we give a loop of order 9 with the nucleus of three elements and with the group
of automorphisms of order 6.

Example 3. The loop (@Q,-) of order 9 on the set @ = {1,2,3,4,5,6,7,8,9} with
the identity 1 is given in Table 7.
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Table 7:

()11 2 3 4 5 6 7 8 9
111 2 3 4 5 6 7 8 9
212 3 1 5 6 4 8 9 7
313 1 2 6 4 5 9 7 8
414 5 6 8 9 7 2 3 1
515 6 4 9 7 8 3 1 2
6|6 4 5 7 8 9 1 2 3
717 8 9 2 3 1 5 6 4
8 18 9 7 3 1 2 6 4 5
919 7 8 1 2 3 4 5 6

A computer research has shown that this loop has the following group of auto-

morphisms of order 6:

Aut Q = {(123456789), (123789456), (123645897), (123897645),

(123564978), (123978564) }

and the nucleus N = N, = {1,2,3}.

This loop satisfies the quasi-identities (c2) and (dy) with the permutation dy =

(123456897) and with the following permutations which are weakly equivalent to dg
(that is have the form Rpadpa'L,, where a € Aut(Q, ), p,q € N): (123456897),
(231564978), (312645789), (123564789), (231645897), (312456978).
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