On I-radicals

O. Horbachuk, Yu. Maturin

Abstract

In this paper I-radicals are studied. Rings are characterized with the help of I-radicals. For example, each I-radical over a left perfect ring splits if and only if this ring is a direct sum of finitely many left perfect rings, the Jacobson radicals of which are maximal ideals of them.

Mathematics subject classification: 16D90.
Keywords and phrases: Radical, T-nilpotent ideal, perfect ring.
As usual, all rings are associative with $1 \neq 0$, all modules are unitary, $J(R)$ denotes the Jacobson radical of a ring R. The category of all left R-modules (right R-modules) will be denoted by $R-\operatorname{Mod}(\operatorname{Mod}-R)$.

A subset I of a ring R is left (right) T-nilpotent whenever for every sequence a_{1}, a_{2}, \ldots in I there is an n such that $a_{n} \ldots a_{2} a_{1}=0\left(a_{1} a_{2} \ldots a_{n}=0\right)$.

A ring R is said to be left (right) perfect if $J(R)$ is right (left) T-nilpotent and $R / J(R)$ is semisimple.

A preradical r is said to be a hereditary preradical in case r is a left exact preradical.

A preradical r is said to be a hereditary torsion in case r is a left exact radical.
A hereditary torsion r of $R-\operatorname{Mod}$ is an S-torsion if there exists a left ideal H of R satisfying the following condition $\{I$ is a left ideal of $R \mid I+H=R\}=$ $\{I$ is a left ideal of $R \mid r(R / I)=R / I\}$ (see [8]).

It is well known that for each left (right) ideal D of $R r_{D}$ is an idempotent radical of $R-\operatorname{Mod}(\operatorname{Mod}-R)$, where

$$
\begin{aligned}
r_{D}(M) & =\sum\{N \mid N \text { is a submodule of } M, D N=N\} \\
\left(r_{D}(M)\right. & \left.=\sum\{N \mid N \text { is a submodule of } M, N D=N\}\right)
\end{aligned}
$$

for every left (right) R-module M [6].
A preradical r is said to be an I-radical if $r=r_{D}$ for some left (right) ideal D of R.

If R is a ring, then the lattice of all I-radicals of $R-\operatorname{Mod}$ is denoted by $\operatorname{Ir}(l, R)[6]$.

We shall say that a preradical r of R - Mod splits if for each left R-module M $r(M)$ is a direct summand of M.

Let R be a ring and let M be a right R-module. For each $m \in M$ we define the following subset of R

$$
\operatorname{Ann}_{r}(m)=\{x \in R \mid m x=0\} .
$$

(c) O. Horbachuk, Yu. Maturin, 2004

Lemma 1. Let I be a two-sided ideal of a ring R. Then the set of right ideals $E_{I}=$ $\{T \mid T+I=R\}$ is a radical filter if and only if the set $S_{I}=\{a \mid a \in R, a R+I=R\}$ satisfies the following conditions:

1) S_{I} is multiplicatively closed;
2) if $s \in S_{I}$ and $a \in R$ then there exist $s^{\prime} \in S_{I}$ and $a^{\prime} \in R$ such that $s a^{\prime}=a s^{\prime}$.

Proof. E_{I} has a basis consisting of principal right ideals (for example, $\left\{a R \mid a \in S_{I}\right\}$ is a basis). Now we consider the conditions $\mathrm{S} 1-\mathrm{S} 4$ [3, Proposition 15.1]. $\mathrm{S} 2-\mathrm{S} 3$ are clear. To verify S 1 we take into account that $1 \in S_{I}$. The property S 4 is immediate from the fact that $s t \in S_{I}$ implies that $s \in S_{I}[5]$.

Theorem 1. Let I be a two-sided ideal of R and $S_{I}=\{a \mid a \in R, a R+I=R\}$. Then r_{I} is a hereditary torsion if and only if the following conditions are fulfilled:

1) S_{I} is multiplicatively closed;
2) if $s \in S_{I}$ and $a \in R$ then there exist $s^{\prime} \in S_{I}$ and $a^{\prime} \in R$ such that sa' $=a s^{\prime}$;
3) for every sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$ (where $a_{i} \in I$ for each $i=1,2, \ldots$)

$$
\bigcup_{i=1}^{\infty} A n n_{r}\left(a_{i} a_{i-1} \ldots a_{1}\right)+I=R
$$

Proof. (\Rightarrow) Let I be a two-sided ideal and r_{I} be a hereditary torsion. Then the radical filter for r_{I} is the set $E_{I}=\{T \mid T$ is a right ideal of $R, T+I=R\}$. In accordance with Lemma 1 conditions $1-2$ are fulfilled. Suppose that condition 3 does not hold true. Then there exists a sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$ (where $a_{i} \in I$ for each $i=1,2, \ldots)$ such that $\bigcup_{i=1}^{\infty} \operatorname{Ann}\left(a_{i} a_{i-1} \ldots a_{1}\right)+I \neq R$. Let F be a free module with free basis $\left\{x_{i}\right\}_{i=1}^{\infty}$ and P be a submodule of F spanned by $\left\{x_{i}-x_{i+1} a_{i}\right\}_{i=1}^{\infty}$. Then $r_{I}(F / P)=F / P$ but the submodule $\bar{x}_{1} R$ of F / P does not belong to $T\left(r_{I}\right)$. This contradicts the assumption that r_{I} is a hereditary torsion.
(\Leftarrow) Let I be a two-sided ideal of R satisfying conditions $1-3$ of the Theorem. Then in accordance with Lemma $1 E_{I}=\{T \mid T$ is a right ideal of $R, T+I=R\}$ is a radical filter. Let α is a hereditary torsion corresponding to the radical filter E_{I}. If $\alpha \neq r_{I}$ then there exists a right module N such that $r_{I}(N)=N$ and $\alpha(N) \neq N$. Put $M=N / \alpha(N)$. Then $M \in T\left(r_{I}\right)$ and $M \in F(\alpha)$. The last relation means that for every $m \in M \backslash\{0\} \operatorname{Ann}_{r}(m)+I \neq R$. On the other hand since $M \in T\left(r_{I}\right)$, for every element $x \in M \backslash\{0\}$ there exist $x_{i}^{(1)} \in M$ and $a_{i}^{(1)} \in I\left(i=1, \ldots, n_{1}\right)$ such that $x=$ $\sum_{i=1}^{n_{1}} x_{i}^{(1)} a_{i}^{(1)}$. At least one of the elements $x_{i}^{(1)} a_{i}^{(1)}\left(i=1, \ldots, n_{1}\right)$ is non-zero. Suppose that $x_{1}^{(1)} a_{1}^{(1)} \neq 0$. Reasoning similarly we have that $x_{1}^{(1)}=\sum_{i=1}^{n_{2}} x_{i}^{(2)} a_{i}^{(2)} \neq 0$. Hence $x_{1}^{(1)} a_{1}^{(1)}=\sum_{i=1}^{n_{2}} x_{i}^{(2)} a_{i}^{(2)} a_{1}^{(1)} \neq 0$. Therefore there exists i, for example $i=1$, such that $x_{1}^{(2)} a_{1}^{(2)} a_{1}^{(1)} \neq 0$. Going on we obtain the sequence $\left\{x_{1}^{(i)} a_{1}^{(i)} a_{1}^{(i-1)} \ldots a_{1}^{(1)}\right\}_{i=1}^{\infty}$ of nonzero elements belonging to M, where $a_{1}^{(i)} \in I$ for each $i=1,2, \ldots$ Property 3 shows
that for the sequence $\left\{a_{1}^{(i)}\right\}_{i=1}^{\infty}$ there exists k such that $\operatorname{Ann}_{r}\left(a_{1}^{(k)} a_{1}^{(k-1)} \ldots a_{1}^{(1)}\right)+I=$ R. Since $\mathrm{Ann}_{r}\left(x_{1}^{(k)} a_{1}^{(k)} a_{1}^{(k-1)} \ldots a_{1}^{(1)}\right) \supseteq \operatorname{Ann}_{r}\left(a_{1}^{(k)} a_{1}^{(k-1)} \ldots a_{1}^{(1)}\right), \operatorname{Ann}_{r}(y)+I=R$, where $y=x_{1}^{(k)} a_{1}^{(k)} a_{1}^{(k-1)} \ldots a_{1}^{(1)} \neq 0$. Thus, $0 \neq y \in \alpha(M)$. It means that $M \notin F(\alpha)$. But $M \in F(\alpha)$. We have a contradiction.

Theorem 2.Let R be a commutative ring. Then each I-radical is a hereditary torsion if and only if $R / J(R)$ is a von Neumann regular ring and $J(R)$ is left T nilpotent.
Proof. (\Leftarrow) Let $J(R)$ be left T-nilpotent and $R / J(R)$ be a von Neumann regular ring. Since conditions 1-2 of Theorem 1 are satisfied for every commutative ring, we have to verify condition 3 of Theorem 1 for an arbitrary two-sided ideal $I \neq R$.

Let $\left\{a_{i}\right\}_{i=1}^{\infty}$ be any sequence such that $a_{i} \in I$ for each $i=1,2, \ldots$. Suppose that there exist infinitely many elements a_{i} belonging to $J(R)$. Then taking into consideration that R is commutative and $J(R)$ is left T-nilpotent, it is obvious that $\bigcup_{i=1}^{\infty} \operatorname{Ann}_{r}\left(a_{n} a_{n-1} \ldots a_{1}\right)=R$. Hence $\bigcup_{n=1}^{\infty} \operatorname{Ann}_{r}\left(a_{n} a_{n-1} \ldots a_{1}\right)+I=R$. Therefore assume that $a_{i} \notin J(R)$ for any $i \geq k$, where $k \in \mathbb{N}$. Since $R / J(R)$ is a von Neumann regular ring, there exist elements $x_{i} \in R, g_{i} \in J(R)$ for each $i \geq k$ such that $a_{i}\left(x_{i} a_{i}-1\right)=g_{i}$. There exists $m \in N$ such that $g_{m} \ldots g_{k}=0(m \geq k)$ because $J(R)$ is left T-nilpotent. Hence $\left(g_{m} \ldots g_{k}\right)\left(x_{m} a_{m}-1\right) \ldots\left(x_{k} a_{k}-1\right)=0$. It is clear that $\left(x_{m} a_{m}-1\right) \ldots\left(x_{k} a_{k}-1\right)=a \pm 1$ for some $a \in I$. Thus $\operatorname{Ann}_{r}\left(a_{m} \ldots a_{1}\right)+I=R$.
(\Rightarrow) Suppose that every I-radical is a hereditary torsion. Since every idempotent radical over a commutative ring corresponding torsion theory to which is cogenerated by a simple module is an I-radical ([4, Proposition 2]), every such an idempotent radical is a hereditary torsion. Therefore the idempotent radical r corresponding torsion theory to which is cogenerated by the class of all simple modules is also a hereditary torsion because it is an intersection of hereditary torsions [1, p.51]. For each maximal ideal M of $R R / M \in F(r)$. Therefore $\{R\}$ is a radical filter for r. This means that $T(r)=\{0\}$. Hence for each non-zero R-module N there exists a simple module P such that $\operatorname{Hom}_{R}(N, P) \neq 0$. Therefore N contains a maximal submodule. Thus every non-zero module N contains a maximal submodule. Now apply Theorem $1.8[7]$. Therefore $J(R)$ is left T-nilpotent and $R / J(R)$ is a von Neumann regular ring.

Theorem 3. Let R be a ring.Then the following statements are equivalent:
(1) Every preradical of $\operatorname{Mod}-R$ is an I-radical;
(2) Every hereditary preradical of $\operatorname{Mod}-R$ is an I-radical;
(3) soc of $\operatorname{Mod}-R$ is an I-radical;
(4) R is semisimple.

Proof. (3) \Rightarrow (4) Let soc of $\operatorname{Mod}-R$ be an I-radical. Then soc $=r_{S}$ for some two-sided ideal S of R. Then $r_{S}(R / M)=\operatorname{soc}(R / M)=R / M$ for any maximal right ideal M of R. It follows from this that $(R / M) S=R / M$ for any maximal right ideal M of R. Hence $(S+M) / M=R / M$, i.e. $S+M=R$ for any maximal right ideal M of R. Thus $S=R$. Then $R S=R R=R$. Therefore $\operatorname{soc}(R)=R$.
(4) $\Rightarrow(1)$ Let R be semisimple. Then every right R-module M is projective. Now apply Proposition 1.4.4 [1] and we have that $r(M)=M r(R)$ for every right R-module M, where r is an arbitrary preradical of $\operatorname{Mod}-R$. It follows from this that every preradical of $\operatorname{Mod}-R$ is an I-radical.
$(1) \Rightarrow(2)$. This is clear.
$(2) \Rightarrow(3)$. This is clear.
Theorem 4. Let R be a ring. If every hereditary torsion of $\operatorname{Mod}-R$ is an I-radical then R is left perfect.

Proof. If a hereditary torsion is an I-radical then it is an S-torsion [8]. Now apply Corollary 3 [8].

Theorem 5. Let R be a ring satisfying the following conditions:

$$
\begin{gathered}
R / J(R) \cong T_{1} \times \ldots \times T_{n} \text { for some simple rings } \\
T_{1}, \ldots, T_{n} \text { and } J(R) \text { is right } T \text {-nilpotent. }
\end{gathered}
$$

Then the following statements are equivalent:
(A) Each I-radical splits;
(B) Each atom of the lattice $\operatorname{Ir}(l, R)$ splits;
(C) $R=R_{1} \dot{\rightarrow}+\ldots \dot{\rightarrow}+R_{n}$, where $R_{i} / J\left(R_{i}\right)$ is simple for every $i \in\{1, \ldots, n\}$.

Proof. $(A) \Rightarrow(B)$ This is clear.
$(B) \Rightarrow(C)$ Assume that each atom of $\operatorname{Ir}(l, R)$ splits. By Theorems 4-5 [6], the lattice $\operatorname{Ir}(l, R)$ has n atoms r_{1}, \ldots, r_{n}. Then $r_{i}=r_{I_{i}}$ for every $i \in\{1, \ldots, n\}$, where I_{i} is an idempotent ideal (see Theorem $9[6]$). Let $i \in\{1, \ldots, n\}$. Then

$$
\begin{equation*}
R=r_{i}(R) \oplus H_{i} \tag{1}
\end{equation*}
$$

where H_{i} is a left ideal of R. By Proposition $2[6], r_{i}(R)=I_{i} R=I_{i}$. Taking into consideration (1), we have that $I_{i} \oplus H_{i}=R$. This implies

$$
\begin{equation*}
I_{i}=R e_{i}, \tag{2}
\end{equation*}
$$

where e_{i} is an idempotent of R.
Therefore $\left\{e_{1}, \ldots, e_{n}\right\}$ is a set of idempotents of the ring. Let's show that all these idempotents are pairwise orthogonal. To prove this we shall show that $I_{i} I_{j}=0$ for $i \neq j, i, j \in\{1, \ldots, n\}$. Really, in view of splitingness we have

$$
\begin{equation*}
I_{j}=r_{i}\left(I_{j}\right) \oplus L_{i j} \tag{3}
\end{equation*}
$$

where $L_{i j}$ is a left ideal of R. By Proposition 2 [6]

$$
\begin{equation*}
r_{i}\left(I_{j}\right)=I_{i} I_{j} \tag{4}
\end{equation*}
$$

By (3)-(4),

$$
\begin{equation*}
I_{j}=I_{i} I_{j} \oplus L_{i j} \tag{5}
\end{equation*}
$$

It follows from (1), (2), (5) that

$$
\begin{equation*}
R=I_{i} I_{j} \oplus L_{i j} \oplus H_{j} . \tag{6}
\end{equation*}
$$

By (6),

$$
\begin{equation*}
I_{i} I_{j}=R e_{i j}, \tag{7}
\end{equation*}
$$

where $e_{i j}$ is an idempotent of R.
Since r_{i} and r_{j} are atoms, $n_{R}=r_{i} \wedge r_{j}$, where n_{R} is 0 in $\operatorname{Ir}(l, R)$ [6].
Taking into account the proof of Theorem 1 [6],

$$
r_{i} \wedge r_{j}=r_{I_{i}} \wedge r_{I_{j}}=r_{I_{i} I_{j}}
$$

Therefore $n_{R}=r_{I_{i} I_{j}}$. By Proposition 1 [6] $I_{i} I_{j}$ is right T-nilpotent. By (7), $e_{i j} \in I_{i} I_{j}$. Since $I_{i} I_{j}$ is right T-nilpotent, $e_{i j}^{s}=0$ for some $s \in \mathbb{N}$. Since $e_{i j}$ is an idempotent, $e_{i j}=e_{i j}^{s}$. Hence $e_{i j}=0$. It follows from (7) that $I_{i} I_{j}=0$. Since $e_{i} e_{j} \in I_{i} I_{j}, e_{i} e_{j}=0$. We shall show that $R=I_{1}+\ldots+I_{n}$. Since $\left\{r_{1}, \ldots, r_{n}\right\}$ is the set of atoms of $\operatorname{Ir}(l, R)$ (see [6]),

$$
r_{R}=u_{R}=r_{1} \vee \ldots \vee r_{n}=r_{I_{1}} \vee \ldots \vee r_{I_{n}}=r_{I_{1}+\ldots+I_{n}}
$$

(see proof of Theorem 1 [6]).
By Proposition $1[6], R=I_{1}+\ldots+I_{n}$, i.e. $R=R e_{1}+\ldots+R e_{n}$. Thus, since idempotents e_{1}, \ldots, e_{n} are pairwise orthogonal, the set $\left\{e_{1}, \ldots, e_{n}\right\}$ is complete. Therefore we have the ring decomposition $R=I_{1} \oplus \ldots \oplus I_{n}$.

Then

$$
\begin{equation*}
R / J(R) \cong I_{1} / J\left(I_{1}\right) \times \ldots \times I_{n} / J\left(I_{n}\right) \tag{8}
\end{equation*}
$$

Since $R / J(R) \cong T_{1} \times \ldots \times T_{n}$ for some simple rings $T_{1}, \ldots, T_{n}, R / J(R) \cong$ $T_{1} \times \ldots \times T_{n}$ is an indecomposable ring decomposition. It follows from (8) that $I_{i} / J\left(I_{i}\right)$ is a simple ring for each $i \in\{1, \ldots, n\}$ (see Proposition 7.8 [2]). It means that we have proved $(B) \Rightarrow(C)$.
$(C) \Rightarrow(A)$ Assume (C). Let $r \in \operatorname{Ir}(l, R)$. Then $r=r_{I}$ for some ideal I of R (see Remark 1 [5]). Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the set of idempotents for the decomposition $R=R_{1} \oplus \ldots \oplus R_{n}$. Since $R_{i} / J\left(R_{i}\right)$ is simple, either $I e_{i}+J\left(R_{i}\right)=J\left(R_{i}\right)$ or $I e_{i}+J\left(R_{i}\right)=R_{i}$.

Set $A=\left\{i \in\{1, \ldots, n\} \mid I e_{i}+J\left(R_{i}\right)=R_{i}\right\}, B=\{1, \ldots, n\} \backslash A$.
By Proposition 1 [6],

$$
r_{I e_{i}+J\left(R_{i}\right)}=n_{R}, \text { if } i \in B ; \quad r_{I e_{i}+J\left(R_{i}\right)}=r_{R_{i}}, \text { if } i \in A .
$$

Then

$$
\begin{gathered}
r_{I}=r_{I e_{1} \oplus \ldots \oplus I e_{n}}=r_{I e_{1}} \vee \ldots \vee r_{I e_{n}}=r_{I e_{1}+J\left(R_{1}\right)} \vee \ldots \vee r_{I e_{n}+J\left(R_{n}\right)}= \\
=\bigvee_{i \in A} r_{I e_{i}+J\left(R_{i}\right)} \vee \bigvee_{i \in B} r_{I e_{i}+J\left(R_{i}\right)}=\bigvee_{i \in A} r_{R_{i}} \vee n_{R}=r_{i \in A} R_{i} .
\end{gathered}
$$

Since $\bigoplus_{i \in A} R_{i}$ is an idempotent ideal of R, it follows from Proposition $2[6]$ that for each left R-module M

$$
r_{I}(M)=r_{i \in A} \oplus_{i} R_{i}(M)=\left(\oplus_{i \in A} R_{i}\right) M
$$

Hence $M=r_{I}(M) \oplus\left(\bigoplus_{i \in B} R_{i}\right) M$.
Corollary 1. Let R be a left perfect ring. Then each atom of the lattice $\operatorname{Ir}(l, R)$ splits if and only if the ring R is a direct sum of finitely many left perfect rings, the Jacobson radicals of which are maximal ideals of them.

Corollary 2. Let R be a left perfect ring. Then each I-radical of $R-\operatorname{Mod}$ splits if and only if the ring R is a direct sum of finitely many left perfect rings, the Jacobson radicals of which are maximal ideals of them.

References

[1] Kashu A.I. Radicals and torsions in modules. Kishinev, Stiinca, 1983 (in Russian).
[2] Anderson F.W., Fuller K.R. Rings and categories of modules. Springer-Verlag, New York, 1973.
[3] Stenström B. Rings and modules of quotients. Lecture Notes in Math., 237, Springer-Verlag, New York, 1971.
[4] Jambor P. Hereditary tensor-orthogonal theories. Comment math. Univ. carol., 1975, 16, N 1, p. 139-145.
[5] Horbachuk O.L., Komarnitskiy N.Y. I-radicals and their properties. Ukr. Matem. Zhurnal, 1978, N 2(30), p. 212-217 (in Russian).
[6] Horbachuk O.L., Maturin Yu.P. Rings and properties of lattices of I-radicals. Bull. Moldavian Academy of Sci. Math., 2002, N 1(38), P. 44-52.
[7] Koifman L.A. Rings over which every module has a maximal submodule. Mat. Zametki, 1970, 7, N 3, p. 359-367 (in Russian).
[8] Horbachuk O.L., Maturin Yu.P. On S-torsion theories in R-Mod. Matematychni Studii, 2001, 15, N 2, p. 135-139.
O. Horbachuk

Received October 7, 2004
Department of Mechanics and Mathematics
Lviv National University
Universitetska str. 1
Lviv, Ukraine 79000
Yu. Maturin
Department of Mathematics
Institute of Physics, Mathematics
and Computer Sciences
Drohobych State Pedagogical University
Stryjska str. 3, Drohobych
82100 Lvivska Oblast, Ukraine

