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On I-radicals

O. Horbachuk, Yu. Maturin

Abstract. In this paper I-radicals are studied. Rings are characterized with the
help of I-radicals. For example, each I-radical over a left perfect ring splits if and only
if this ring is a direct sum of finitely many left perfect rings, the Jacobson radicals of
which are maximal ideals of them.
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As usual, all rings are associative with 1 6= 0, all modules are unitary, J(R)
denotes the Jacobson radical of a ring R. The category of all left R-modules (right
R-modules) will be denoted by R − Mod (Mod−R).

A subset I of a ring R is left (right) T -nilpotent whenever for every sequence
a1, a2, . . . in I there is an n such that an . . . a2a1 = 0 (a1a2 . . . an = 0).

A ring R is said to be left (right) perfect if J(R) is right (left) T -nilpotent and
R/J(R) is semisimple.

A preradical r is said to be a hereditary preradical in case r is a left exact
preradical.

A preradical r is said to be a hereditary torsion in case r is a left exact radical.
A hereditary torsion r of R − Mod is an S-torsion if there exists a left ideal

H of R satisfying the following condition {I is a left ideal of R | I + H = R} =
{I is a left ideal of R | r(R/I) = R/I} (see [8]).

It is well known that for each left (right) ideal D of R rD is an idempotent radical
of R − Mod (Mod−R), where

rD(M) =
∑

{N | N is a submodule of M,DN = N}

(rD(M) =
∑

{N | N is a submodule of M,ND = N})

for every left (right) R-module M [6].
A preradical r is said to be an I-radical if r = rD for some left (right) ideal D

of R.
If R is a ring, then the lattice of all I-radicals of R − Mod is denoted by

Ir(l, R) [6].
We shall say that a preradical r of R − Mod splits if for each left R-module M

r(M) is a direct summand of M .
Let R be a ring and let M be a right R-module. For each m ∈ M we define the

following subset of R
Annr(m) = {x ∈ R | mx = 0}.
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Lemma 1. Let I be a two-sided ideal of a ring R. Then the set of right ideals EI =
{T | T +I = R} is a radical filter if and only if the set SI = {a | a ∈ R, aR+I = R}
satisfies the following conditions:

1) SI is multiplicatively closed;

2) if s ∈ SI and a ∈ R then there exist s′ ∈ SI and a′ ∈ R such that sa′ = as′.

Proof. EI has a basis consisting of principal right ideals (for example, {aR | a ∈ SI}
is a basis). Now we consider the conditions S1 – S4 [3, Proposition 15.1]. S2 – S3 are
clear. To verify S1 we take into account that 1 ∈ SI . The property S4 is immediate
from the fact that st ∈ SI implies that s ∈ SI [5]. �

Theorem 1. Let I be a two-sided ideal of R and SI = {a | a ∈ R, aR + I = R}.
Then rI is a hereditary torsion if and only if the following conditions are fulfilled:

1) SI is multiplicatively closed;

2) if s ∈ SI and a ∈ R then there exist s′ ∈ SI and a′ ∈ R such that sa′ = as′;

3) for every sequence {ai}
∞

i=1 (where ai ∈ I for each i = 1, 2, . . .)

∞
⋃

i=1

Annr(aiai−1 . . . a1) + I = R.

Proof. (⇒) Let I be a two-sided ideal and rI be a hereditary torsion. Then the
radical filter for rI is the set EI = {T | T is a right ideal of R,T + I = R}. In
accordance with Lemma 1 conditions 1 – 2 are fulfilled. Suppose that condition 3
does not hold true. Then there exists a sequence {ai}

∞

i=1 (where ai ∈ I for each

i = 1, 2, . . .) such that
∞
⋃

i=1
Ann(aiai−1 . . . a1) + I 6= R. Let F be a free module with

free basis {xi}
∞

i=1 and P be a submodule of F spanned by {xi − xi+1ai}
∞

i=1. Then
rI(F/P ) = F/P but the submodule x1R of F/P does not belong to T (rI). This
contradicts the assumption that rI is a hereditary torsion.

(⇐) Let I be a two-sided ideal of R satisfying conditions 1–3 of the Theorem.
Then in accordance with Lemma 1 EI = {T | T is a right ideal of R,T +I = R} is a
radical filter. Let α is a hereditary torsion corresponding to the radical filter EI . If
α 6= rI then there exists a right module N such that rI(N) = N and α(N) 6= N . Put
M = N/α(N). Then M ∈ T (rI) and M ∈ F (α). The last relation means that for
every m ∈ M \{0} Annr(m)+ I 6= R. On the other hand since M ∈ T (rI), for every

element x ∈ M \ {0} there exist x
(1)
i ∈ M and a

(1)
i ∈ I (i = 1, . . . , n1) such that x =

n1
∑

i=1
x

(1)
i a

(1)
i . At least one of the elements x

(1)
i a

(1)
i (i = 1, . . . , n1) is non-zero. Suppose

that x
(1)
1 a

(1)
1 6= 0. Reasoning similarly we have that x

(1)
1 =

n2
∑

i=1
x

(2)
i a

(2)
i 6= 0. Hence

x
(1)
1 a

(1)
1 =

n2
∑

i=1
x

(2)
i a

(2)
i a

(1)
1 6= 0. Therefore there exists i, for example i = 1, such that

x
(2)
1 a

(2)
1 a

(1)
1 6= 0. Going on we obtain the sequence {x

(i)
1 a

(i)
1 a

(i−1)
1 . . . a

(1)
1 }∞i=1 of non-

zero elements belonging to M , where a
(i)
1 ∈ I for each i = 1, 2, . . .. Property 3 shows
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that for the sequence {a
(i)
1 }∞i=1 there exists k such that Annr(a

(k)
1 a

(k−1)
1 . . . a

(1)
1 )+I =

R. Since Annr(x
(k)
1 a

(k)
1 a

(k−1)
1 . . . a

(1)
1 ) ⊇ Annr(a

(k)
1 a

(k−1)
1 . . . a

(1)
1 ), Annr(y) + I = R,

where y = x
(k)
1 a

(k)
1 a

(k−1)
1 . . . a

(1)
1 6= 0. Thus, 0 6= y ∈ α(M). It means that M /∈ F (α).

But M ∈ F (α). We have a contradiction. �

Theorem 2.Let R be a commutative ring. Then each I-radical is a hereditary
torsion if and only if R/J(R) is a von Neumann regular ring and J(R) is left T -
nilpotent.

Proof. (⇐) Let J(R) be left T -nilpotent and R/J(R) be a von Neumann regular
ring. Since conditions 1–2 of Theorem 1 are satisfied for every commutative ring,
we have to verify condition 3 of Theorem 1 for an arbitrary two-sided ideal I 6= R.

Let {ai}
∞

i=1 be any sequence such that ai ∈ I for each i = 1, 2, . . . . Suppose
that there exist infinitely many elements ai belonging to J(R). Then taking into
consideration that R is commutative and J(R) is left T -nilpotent, it is obvious that
∞
⋃

i=1
Annr(anan−1 . . . a1) = R. Hence

∞
⋃

n=1
Annr(anan−1 . . . a1) + I = R. Therefore

assume that ai /∈ J(R) for any i ≥ k, where k ∈ N. Since R/J(R) is a von Neumann
regular ring, there exist elements xi ∈ R, gi ∈ J(R) for each i ≥ k such that
ai(xiai −1) = gi. There exists m ∈ N such that gm . . . gk = 0 (m ≥ k) because J(R)
is left T -nilpotent. Hence (gm . . . gk)(xmam − 1) . . . (xkak − 1) = 0. It is clear that
(xmam − 1) . . . (xkak − 1) = a ± 1 for some a ∈ I. Thus Annr(am . . . a1) + I = R.

(⇒) Suppose that every I-radical is a hereditary torsion. Since every idempotent
radical over a commutative ring corresponding torsion theory to which is cogenerated
by a simple module is an I-radical ([4, Proposition 2]), every such an idempotent
radical is a hereditary torsion. Therefore the idempotent radical r corresponding
torsion theory to which is cogenerated by the class of all simple modules is also a
hereditary torsion because it is an intersection of hereditary torsions [1, p.51]. For
each maximal ideal M of R R/M ∈ F (r). Therefore {R} is a radical filter for r.
This means that T (r) = {0}. Hence for each non-zero R-module N there exists
a simple module P such that HomR(N,P ) 6= 0. Therefore N contains a maximal
submodule. Thus every non-zero module N contains a maximal submodule. Now
apply Theorem 1.8 [7]. Therefore J(R) is left T -nilpotent and R/J(R) is a von
Neumann regular ring. �

Theorem 3. Let R be a ring.Then the following statements are equivalent:

(1) Every preradical of Mod−R is an I-radical;

(2) Every hereditary preradical of Mod−R is an I-radical;

(3) soc of Mod−R is an I-radical;

(4) R is semisimple.

Proof. (3) ⇒ (4) Let soc of Mod−R be an I-radical. Then soc = rS for some
two-sided ideal S of R. Then rS(R/M) = soc(R/M) = R/M for any maximal right
ideal M of R. It follows from this that (R/M)S = R/M for any maximal right ideal
M of R. Hence (S + M)/M = R/M , i.e. S + M = R for any maximal right ideal
M of R. Thus S = R. Then RS = RR = R. Therefore soc(R) = R.
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(4) ⇒ (1) Let R be semisimple. Then every right R-module M is projective.
Now apply Proposition 1.4.4 [1] and we have that r(M) = Mr(R) for every right
R-module M , where r is an arbitrary preradical of Mod−R. It follows from this
that every preradical of Mod−R is an I-radical.

(1) ⇒ (2). This is clear.
(2) ⇒ (3). This is clear. �

Theorem 4. Let R be a ring. If every hereditary torsion of Mod−R is an I-radical
then R is left perfect.

Proof. If a hereditary torsion is an I-radical then it is an S-torsion [8]. Now apply
Corollary 3 [8]. �

Theorem 5. Let R be a ring satisfying the following conditions:

R/J(R) ∼= T1 × . . . × Tn for some simple rings

T1, . . . , Tn and J(R) is right T -nilpotent.

Then the following statements are equivalent:
(A) Each I-radical splits;
(B) Each atom of the lattice Ir(l, R) splits;

(C) R = R1
·
→ + . . .

·
→ +Rn, where Ri/J(Ri) is simple for every i ∈ {1, . . . , n}.

Proof. (A) ⇒ (B) This is clear.
(B) ⇒ (C) Assume that each atom of Ir(l, R) splits. By Theorems 4–5 [6], the

lattice Ir(l, R) has n atoms r1, . . . , rn. Then ri = rIi
for every i ∈ {1, . . . , n}, where

Ii is an idempotent ideal (see Theorem 9 [6]). Let i ∈ {1, . . . , n}. Then

R = ri(R) ⊕ Hi, (1)

where Hi is a left ideal of R. By Proposition 2 [6], ri(R) = IiR = Ii. Taking into
consideration (1), we have that Ii ⊕ Hi = R. This implies

Ii = Rei, (2)

where ei is an idempotent of R.
Therefore {e1, . . . , en} is a set of idempotents of the ring. Let’s show that all

these idempotents are pairwise orthogonal. To prove this we shall show that IiIj = 0
for i 6= j, i, j ∈ {1, . . . , n}. Really, in view of splitingness we have

Ij = ri(Ij) ⊕ Lij, (3)

where Lij is a left ideal of R. By Proposition 2 [6]

ri(Ij) = IiIj . (4)

By (3)–(4),
Ij = IiIj ⊕ Lij . (5)
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It follows from (1), (2), (5) that

R = IiIj ⊕ Lij ⊕ Hj. (6)

By (6),

IiIj = Reij , (7)

where eij is an idempotent of R.
Since ri and rj are atoms, nR = ri ∧ rj , where nR is 0 in Ir(l, R) [6].
Taking into account the proof of Theorem 1 [6],

ri ∧ rj = rIi
∧ rIj

= rIiIj
.

Therefore nR = rIiIj
. By Proposition 1 [6] IiIj is right T -nilpotent. By (7),

eij ∈ IiIj. Since IiIj is right T -nilpotent, es
ij = 0 for some s ∈ N. Since eij is an

idempotent, eij = es
ij . Hence eij = 0. It follows from (7) that IiIj = 0. Since

eiej ∈ IiIj , eiej = 0. We shall show that R = I1 + . . . + In. Since {r1, . . . , rn} is the
set of atoms of Ir(l, R) (see [6]),

rR = uR = r1 ∨ . . . ∨ rn = rI1 ∨ . . . ∨ rIn = rI1+...+In

(see proof of Theorem 1 [6]).
By Proposition 1 [6], R = I1 + . . . + In, i.e. R = Re1 + . . . + Ren. Thus, since

idempotents e1, . . . , en are pairwise orthogonal, the set {e1, . . . , en} is complete.
Therefore we have the ring decomposition R = I1 ⊕ . . . ⊕ In.

Then

R/J(R) ∼= I1/J(I1) × . . . × In/J(In). (8)

Since R/J(R) ∼= T1 × . . . × Tn for some simple rings T1, . . . , Tn, R/J(R) ∼=
T1 × . . . × Tn is an indecomposable ring decomposition. It follows from (8) that
Ii/J(Ii) is a simple ring for each i ∈ {1, . . . , n} (see Proposition 7.8 [2]). It means
that we have proved (B) ⇒ (C).

(C) ⇒ (A) Assume (C). Let r ∈ Ir(l, R). Then r = rI for some ideal I of R
(see Remark 1 [5]). Let {e1, . . . , en} be the set of idempotents for the decomposition
R = R1 ⊕ . . . ⊕ Rn. Since Ri/J(Ri) is simple, either Iei + J(Ri) = J(Ri) or
Iei + J(Ri) = Ri.

Set A =
{

i ∈ {1, . . . , n} | Iei + J(Ri) = Ri

}

, B = {1, . . . , n} \ A.
By Proposition 1 [6],

rIei+J(Ri) = nR, if i ∈ B; rIei+J(Ri) = rRi
, if i ∈ A.

Then

rI = rIe1⊕...⊕Ien = rIe1 ∨ . . . ∨ rIen = rIe1+J(R1) ∨ . . . ∨ rIen+J(Rn) =

=
∨

i∈A

rIei+J(Ri) ∨
∨

i∈B

rIei+J(Ri) =
∨

i∈A

rRi
∨ nR = r L

i∈A

Ri
.
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Since
⊕

i∈A

Ri is an idempotent ideal of R, it follows from Proposition 2 [6] that

for each left R-module M

rI(M) = r L

i∈A

Ri
(M) =

(

⊕i∈ARi

)

M.

Hence M = rI(M) ⊕
(

⊕

i∈B

Ri

)

M . �

Corollary 1. Let R be a left perfect ring. Then each atom of the lattice Ir(l, R)
splits if and only if the ring R is a direct sum of finitely many left perfect rings, the
Jacobson radicals of which are maximal ideals of them.

Corollary 2. Let R be a left perfect ring. Then each I-radical of R − Mod splits if
and only if the ring R is a direct sum of finitely many left perfect rings, the Jacobson
radicals of which are maximal ideals of them.
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