
BULETINUL ACADEMIEI DE ŞTIINŢE
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X-normal mappings

P.V. Dovbush

Abstract. This is a survey of achievements in the theory of normal holomorphic
mappings. We systematize and present all the results on the subject that are obtained
by the author from the beginning of the theory until the date of writing the paper.
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1 Introduction

The idea to connect with a meromorphic function f in the unit disc U = {z ∈
C : |z| < 1} a family F = {f ◦ g}, where g ranges over all automorphisms of U (one-
to-one holomorphic mappings of U onto itself) and study those functions f whose
family F is normal was arise apparently of K. Yosida [36] in 1934 and considered
by K. Noshiro [27] in 1937. O. Lehto and K.I. Virtanen [26] call ”normal functions”
those meromorphic functions f whose family F is normal.

The results obtained by O. Lehto and K.I. Virtanen [26] in 1957 motivated
further study of normal meromorphic function. In the period between 1957 and
1965, a significant contribution to the theory was madden by F. Bagemihl, W. Seidel,
V.I. Gavrilov, P. Lappan.

A systematic study of normal functions in C
n was begun by the author in 1981

in the papers [9–11]. In 1983 the first dissertation on normal functions was defended
at Moscow State University by the author and J.A. Cima and S.G. Krantz have pub-
lished, in the USA, the article [6] in which they have developed the ideas contained
in [8],[9]. In such a way appeared the theory of normal mappings.

The first application of this theory was obtained by V.I. Gavrilov and the author
in the paper [18]. The first survey on the theory of normal mappings was published
by V.I. Gavrilov and P.V. Dovbush [19] in 2001.

The fact that the new subsection Several Complex Variables 32A18 Bloch func-
tions, normal functions was created in the Mathematics Subject Classification
Scheme of the AMS journal Mathematical Review in 2000 emphasizes the actuality
of this theme.

All results of this work belong to the author, are published in [9–20], and the
author reported about them at:

International Conference on Mathematics and Informatics, Chisinau,
September 19-21, 1996.
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International Conference on Complex Analysis and Related Topics.
The VIIIth Romanian-Finnish Seminar. 1999, Iassy, Romania.

The first Conference of the Mathematical Society of the Republic of
Moldova, Chisinau, 2001.

International Conference on Complex Analysis and Related Topics.
The IXth Romanian-Finnish Seminar. 2001, Braşov, Romania.

The 5th Congress of Romanian mathematicians. Pitesti. Romania.
June 22–28, 2003.

2 X-normal mappings

Let M and N be complex manifolds. We denote the set of all holomorphic
mappings from M into N by H(M,N).

A subset F of H(M,N) is said to be a normal family in the sense of H.Wu [35]
iff every sequence {fj} of F has a subsequence which ether converges uniformly on
compact subsets of M (i.e. converges normally on M) or, given any compact K in
M, and a compact K ′ in N, there exists an j0 such that fj(K) ∩ K ′ = ∅ for all
j ≥ j0.

For the complex manifolds M, which have a transitive group of biholomorphic
automorphisms1 (i.e., if given p, q ∈ M there exists a biholomorphic automorphism
φ : M → M with φ(p) = q) the definition of normal mapping can be introduced by
analogy with the one dimensional case.

Definition 1. Let M be a homogeneous manifold and N be a connected Hermitian
manifold. We say that a holomorphic mapping f : M → N is normal if the fam-
ily F = {f ◦ g}, where g ranges over all automorphisms (one-to-one holomorphic
mappings of M onto itself), forms a normal family in the sense of H.Wu.

The normality of a complex function imposes a restriction on the growth of
function. Our first result is the following.

Theorem 1. Let f be a normal meromorphic function on the unit ball B = {z ∈
C

n : |z| < 1} and let Ω = {z ∈ B : |2zn − 1| < 1, |′z| < |1 − zn|}. If for all z ∈ Ω

|f(z)| < exp

(

−1

(1 − |z|)1+ε

)

for some ε > 0. Then f ≡ 0.

It is important to note that:

(a) The unit disc in C is a canonical domain, because Riemann map-
ping theorem says that every proper simply connected open subset D
of C is biholomorphic to the disc. Poincaré’s theorem that the ball and
the polydisc are biholomorphically inequivalent, shows that there is no

1These manifolds are called homogeneous manifolds.
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Riemann mapping theorem in several complex variables. This implies
that there is no canonical domain in C

n for n > 1.
(b) It has long been known that in C

2 there exist simply connected do-
mains whose only holomorphic automorphism is the identity (cf. Benke,
Tullen [3, p. 169]). And, what is more smoothly, bounded domains
in C

n generally have no biholomorphic self mappings different from the
identity. A result due to Burns, Shnider and Wells [5] clarifies how truly
dismal the situation is.

(c) Every domain in the complex plane with C2-boundary is strongly
pseudoconvex. The result due to Bun Wong [34] and Rosay [30] states
that the only strongly pseudoconvex domain in C

n with transitive auto-
morphism group is the ball.

(d) E. Cartan proved that any bounded homogeneous domain in C
2,

is biholomorphic to either the ball B2 = {(z1, z2) : |z1|
2 + |z2|

2 < 1} or
the polydisc U2 = {(z1, z2) : |z1| < 1, |z2| < 1}. In C

3, E. Cartan’s result
is that any bounded homogeneous domain is biholomorphic to either the
ball, the polydisc, or (writing zj = xj + yj) the tube domain

{(z1, z2, z3) : y3 > [(y1)
2 + (y2)

2]1/2}.

(While the third of these domains is unbounded, it has a bounded real-
ization.) In any C

n, the set of equivalence classes of bounded symmetric
domains2 is finite, as shown by E. Cartan.

Since general domains in C
n, n > 1, have trivial automorphism groups it is natu-

ral to try to generalize the notion of normal mappings to general complex manifolds
and to extend classical results to more general settings.

Let N be a connected paracompact hermitian manifold with hermitian metric
dsN which induces the standard topology on N. By sN we denote the distance
function associated with dsN . Let Y be a relatively compact complex subspace of
a hermitian manifold N. We shall denote by H(M,Y ) the space of all holomorphic
mappings f : M → N with f(M) ⊂ Y.

The classical hyperbolic metric on the unit disk can be extended to the higher
dimension at least by three different ways.

Let Tp(M) be a complex tangent space to M at p ∈ M and vector v ∈ Tp(M).
The Kobayashi norm is given by

KM (p, v) = inf{1/r : r > 0 and there exists

h ∈ H(U,M), h(0) = p, h′(0) = r · v}.

With v ∈ Tp(M) as above, the Caratheodory norm is defined by

CM (p, v) = sup {|dgp(v))| : g ∈ H(M,U)} .

2A domain D ⊆ C
n is called symmetric if for each z0 ∈ D there exists a biholomorphic auto-

morphism φz0
: D → D with φz0

◦ φz0
= id so that z0 is an isolated fixed point of φz0

.
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The Bergman norm, denoted by BM (p, v), is defined by the relation3

(BM (p, v))2 =

n
∑

j,k=1

gj,k(p)vjvk.

In following let XM denote the Caratheodory, Kobayashi or Bergman norms on
M.

First we need the following generalization of Marty’s Criterion for normality of
holomorphic mappings.

Lemma 1. Let M be a complex manifold such that for each p ∈ M, there exists
a neighborhood U and a constant c = c(U) > 0 such that XM (p, v) ≥ c · |v| for
(p, v) ∈ T (U) = U × Tp(M), and let Y be a relatively compact complex subspace of
an Hermitian manifold N with the Hermitian metric dsN . The family F ⊂ H(M,Y )
is normal in the sense of H.Wu if for each compact subset K ⊂ M there exists a
positive constant L = L(K) such that

ds2
N (f(p), df(p)v) ≤ L(K) · XM (p, v)2

for all p ∈ K, v ∈ Tp(M) and all f ∈ F.

Marty’s Criterion was first proved by the author in [8]4 for M = domain in C
n

and N = C. See also [33]5,[6],[21].
Marty’s Criterion plays a fundamental role in the theory of X -normal mappings.

Using Marty’s Criterion, we can prove the following elegant geometric characteriza-
tion of normal mappings.

Theorem 2. Let M be a homogenious complex manifold such that for each p ∈ M,
there exists a neighborhood U and a constant c = c(U) > 0 such that XD(p, v) ≥ c·|v|
for (p, v) ∈ U × Tp(M) and let Y be a relatively compact complex subspace of an
Hermitian manifold N with the Hermitian metric dsN . A holomorphic mapping
f ∈ H(D,Y ) is normal iff there exists a finite positive constant L such that

f∗ds2
N ≤ L · (XD)2.

Results related to Theorem 2 can be found in [9, 20, 21, 22].
Using Shwarz-Pick lemma it is easy to check that if D = U then XU (z, v) coin-

cides with the Poincaré metric in U ρ(z)|v| = (1−|z|2)−1|v|. Hence Theorem 1 is the
full generalization of the Lexto-Virtanen Criterion to a higher-dimensional domain:

A meromorphic function f : U → C is normal iff there exist a finite constant L
such that

f∗ds2
C
(z, v) ≤ L · (ρ(z)|v|)2,

for all z ∈ U, v ∈ C.
The characterization of normal mappings given in Theorem 2 leads to a natural

generalization of the concept of X -normal mappings. We give the following:

3(BM (p, v))2 is called Bergman’s form of M.
4Received by the Editor on 18 July, 1979.
5Received by the Editor on 17 October, 1979; revised form on 30 January, 1980.
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Definition 2. Let M be a complex manifold and let N be a Hermitian manifold N
with the Hermitian metric dsN . We say that a holomorphic mapping f : M → N is
X -normal if there exists a finite positive constant L such that

f∗ds2
N ≤ L · (XM )2.

One sees at once that all Bloch functions (see [33]) of several complex variables
are normal functions.

It is easy to check using the definition of the Caratheodory norm that all bounded
holomorphic function are C-normal. On the other hand, from the Lindelof’s theorem
follows that there are normal functions which do not belong to any Hardy space
Hp(D), and functions in Hp which are not normal.

In the case of strongly pseudoconvex domains, the classes of normal mappings
defined in terms of the Bergman, Carathéodory, and Kobayashi norms are the same.
This assertion follows from well-known estimates on the asymptotic behavior of these
norms.

Since XD ≥ CD, the class of K-normal or B-normal mappings contains the class
of C-normal mappings. But in what follows, we will show that these classes, generally
speaking, are different.

3 Extension properties of X -normal mappings

First we prove that in the one dimensional case the following result holds.

Proposition 1. Let f be a meromorphic function in punctured unit disk U∗ =
U \ {0}. If f has an isolated singularity at the origin and there exists a monotone
increasing function h such that

|zf ′(z)| ≤ h(|f(z)|)

for all z ∈ U∗, then f has a meromorphic extension at the origin.

If D ⊂ C is multiply connected, f is said to be normal on D if f is normal on
the universal cover of D.

From Proposition 1 immediately follows the extension of the big Picard theorem
due to O. Lehto and K.I. Virtanen [26, Theorem 9, p. 92]:

Isolated singularities are removable for normal meromorphic functions
of the one complex variable.

Since norms KU and KU∗ are comparable near ∂U, the extended function is
normal in U.

It is of interest to have analogues of this theorem in several variables.
Generalizing O. Lehto and K.I. Virtanen’s result to the case of several complex

variables P.Järvi [24] proved that K-normal mappings can be extended to holomor-
phic mappings through analytic subvarieties of codimension 1 provided the singu-
larities are normal crossings.
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J. Riihentaus [29] generalized P.Järvy result and proved that K-normal mappings
can be extended to holomorphic mappings through closed in D subsets of locally
finite (2n − 2)-dimensional Hausdorff measure.

The principal our result is the following:

Theorem 3. Suppose that D is a bounded domain in C
n, n > 1, such that XD

is a continuous function on D × C
n, and suppose that E ⊂ D is closed in D and

has the zero (2n− 1)-dimensional Hausdorff measure and such that XD\E ≡ XD on

(D \ E) × C
n. If f : D \ E → C is X -normal, then f extends to a holomorphic

mapping F : D → C which is X -normal on D.

If E ⊂ D is closed in D and has the zero (2n−1)-dimensional Hausdorff measure
then CD\A(z, v) ≡ CD(z, v) on (D \ A) × C

n. Since Caratheodory norm CD(z, v) is
a continuous function on D × C

n as a consequence of Theorem 3 we have

Theorem 4. Let D ⊂ C
n, n > 1, be a domain and let E ⊂ D be closed in D and

have the zero (2n−1)-dimensional Hausdorff measure. If f : D\A → C is C-normal
mapping, then f has a C-normal extension F : D → C.

If A is an analytic subset of D of codimension at least one, then BD\A(z, v) ≡
BD(z, v) on (D \A)×C

n (see [4]). Bergman norm BD(z, v) is a continuous function
on D × C

n. It follows that Theorem 3 has the following consequence:

Theorem 5. Let D ⊂ C
n, n > 1, be a domain and let A ⊂ D be an analytic

subvariety of codimension at least one. If f : D \A → C is B-normal mapping, then
f has a B-normal extension F : D → C.

Since we can consider any a ∈ U as an analytic subset of U of codimension one
we can interpret Theorem 5 as the full generalization of classical Lehto-Virtanen’s
theorem [26, Theorem 9, p. 92] to a higher-dimensional domain.

Using the notion of P-sequence (a sequence {zj} ⊂ D is a P-sequence for an holo-
morphic mapping f : D → C if limj→∞ kD(zj , wj) = 0 but limj→∞s

C
(f(zj), f(wj)) ≥

ǫ for some ǫ > 0 and some {wj} ⊂ D) we prove the following result.

Theorem 6. Let D ⊂ C
n, n > 1, be a domain and let E ⊂ D be closed in D and

have the zero (2n−2)-dimensional Hausdorff measure. If f : D\A → C is K-normal
mapping, then f has a K-normal extension F : D → C.

It is shown in [22] that all mappings whose range omits at least three values
belong to the class of all K-normal mappings. The following simple example shows
that this is not true for the rest two classes mentioned above.

Let f(z1, z2) = z1/z2 and let A = {z1z2(z1 − z2) = 0}. Because f(D \ A) ⊂
C \ {0, 1}, it follows that f is K-normal in D \ A. The function f can not be C-
normal or B-normal in D \ A. Otherwise f would have a holomorphic extension
F : D → C.

Therefore, we have the following proposition.

Proposition 2. Let D be a domain in C
2 and let A = {z1z2(z1 − z2) = 0}.
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(a) The class of C-normal mappings defined on D \ A is a proper
subclass of K-normal mappings defined on D \ A.

(b) The class of B-normal mappings defined on D\A is different from
the class of K-normal mappings defined on D \ A.

(c) The Kobayashi norm on D\A is not compatible with the Bergman
or the Caratheodory norm on D \ A.

4 Boundary behavior of holomorphic mappings

In the case of one complex variable, O. Lehto and K.I. Virtanen [26] showed that
the notion of normal meromorphic functions is closely related to some important
problems from the theory of boundary behavior of holomorphic mappings.

Let D be a bounded domain in C
n with C2-boundary and let δ(z) = inf{|z− ζ| :

ζ ∈ ∂D}. If ξ ∈ ∂D, let νξ denote the unit outward normal at ξ.
We say that f ∈ H(D,N) has radial limit l ∈ N at ξ ∈ ∂D if

lim
t→0+

sN (f(ξ − tνξ), l) = 0.

An admissible approach region Aα(ξ) with the vertex at ξ ∈ ∂D and of the
aperture α > 0 is defined as follows ([32]):

Aα(ξ) = {z ∈ D : |(z − ξ, νξ)| < (1 + α)δξ(z), |z − ξ|2 < αδξ(z)},

where ( , ) is the usual Hermitian product in C
n, and δξ(z) = min{δ(z), dist(z, Tξ (∂D))}.

We say that f ∈ H(D,N) has an admissible limit l ∈ N at ξ ∈ ∂D if

lim
Aα(ξ)∋z→ξ

sN (f(z), l) = 0,

for every α ≥ 1.
E. Stein [32] proves that admissible domains give a Fatou-type theorem on any

smoothly bounded domain in C
n, but his result is only optimal for strongly pseudo-

convex domains (see [23]). In Stein’s theory the aperture α of the approach regions
is fixed once and for all.

We prove the following theorems.

Theorem 7. Let D be a bounded domain in C
n, n > 1, with C2-boundary. If

f ∈ H(D, C) has the radial limit l ∈ C at ξ ∈ ∂D and Ref has admissible limit at
ξ, then f has an admissible limit at ξ.

Theorem 8. Let D be a bounded domain in C
n with C2-boundary. If f : D → C is

K-normal in D, and

lim
Aβ(ξ)∋z→ξ

s
C
(f(z), l) = 0 exists for some β > 0,

then f has an admissible limit l ∈ C at ξ.



78 P.V. DOVBUSH

If α ≥ 0, define the K-admissible approach region of aperture α at ξ to be
(see [25])

Kα(ξ) = {z ∈ D : kD(z,Nξ) < α}.

Here kD(z,Nξ) represents the Kobayashi distance from z to Nξ.
If D ⊂⊂ C

n is strongly pseudoconvex domain then there are constants c1, c2 > 0
depending on D and an open set W ⊇ ∂D such that

U ∩ Ac1α(ξ) ⊇ Kα(ξ) ∩ W ⊇ U ∩Ac2α(ξ).

for any ξ ∈ ∂D and α > 1.
We say that a mapping g : D → N has the K-limit l ∈ N at ξ ∈ ∂D if

lim
Kα(ξ)∋z→ξ

sN (g(z), l) = 0,

for every α ≥ 1.
Denote by

Qf (z) = sup
v∈ Cn\{0}

{

dsN (f(z), df(z)(v))

KD(z, v)

}

.

In [26], O. Lehto and K.I. Virtanen showed that if a meromorphic function f in
the unit disk U has the radial limit at the point 1 ∈ ∂U, then f has the angular
limit at 1 iff Qf is bounded on every Stolz regions at 1.

This is not longer true for several variables. The function f(z1, z2) = z2m
2 /(1−z1)

is bounded and holomorphic on the Tullen domain {(z1, z2) ∈ C
2 : |z1|

2+|z2|
2m < 1}

and f has the radial limit 0 at 1 = (1, 0) but it does not have a K-limit at 1.
We prove the following criterion for existence of K-limits.

Theorem 9. Let D be a complete hyperbolic domain in C
n and let Y be a relatively

compact complex subspace of an Hermitian manifold N with the Hermitian metric
dsN . If f ∈ H(D,Y ) has the radial limit at ξ ∈ ∂D, then f has the K-limit at ξ iff
Qf has the K-limit zero at ξ.

In [2], F. Bagemihl and W. Seidel posed the following question:
Given a sequence {zj} ⊂ U converging to same ξ ∈ ∂U and a holomorphic

mapping f ∈ H(U, C) such that limj→∞ s
C
(f(z), l) = 0 for same l ∈ C, under what

condition on f and {zj} can f have the limit l along some continuum in U which is
asymptotic at ξ.

They answer this question with two interesting sufficient condition on f and
{zj}. We extend their results to the higher dimensional case.

Theorem 10. Let D be a strongly pseudoconvex domain in C
n (n ≥ 1), ξ ∈ ∂D,

and let Y be a relatively compact complex space of an Hermitian manifold N with
the Hermitian metric dsN . Let f ∈ H(D,Y ) be a normal mapping which omits l ∈ Y
in D. Let {am} and {bm} be sequences in D such that

lim
m→∞

am = ξ ∈ ∂D and lim
m→∞

bm = ξ.
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If kD(am, bm) < ǫ < ∞ for all m ≥ 1 and

lim
m→∞

sN (f(am), l) = 0, then lim
m→∞

sN (f(bm), l) = 0.

The same results holds when we replace ”strongly pseudoconvex” by ”convex”.

From Theorem 10 immediately follows the following strengthening of the Lin-
delöf-Lehto-Virtanen’s theorem:

Theorem 11. Let D be a strongly pseudoconvex domain in C
n (n ≥ 1), ξ ∈ ∂D,

and let Y be a relatively compact complex space of an Hermitian manifold N with
the Hermitian metric dsN . If f ∈ H(D,N) is a normal mapping which omits l ∈ Y
in D and f has radial limit l at ξ, then f has the admissible limit at ξ.

The hypothesis of ”radial limit” may be replaced by ”limit along some non-
tangential curve γ” as proved by the author in [11]6. In [28]7 this theorem was
proved for D = B and f ∈ H∞(B).

Theorem 10 also holds when we replace ”strongly pseudoconvex” by ”convex”.

The following theorem illustrates more precisely the Lindelöf principle:

Theorem 12. Let D be a convex domain in C
n (n ≥ 1), ξ ∈ ∂D, and let Y be a

relatively compact complex space of an Hermitian manifold N with the Hermitian
metric dsN . If f ∈ H(D,N) is a normal mapping which omits l ∈ Y in D and f
has radial limit l at ξ, then f has the K-limits at ξ.

Again the hypothesis of ”radial limit” may be replaced by ”limit along some
non-tangential curve γ.”

It should be noted that, in general, K-admissible domains are strongly larger

than admissible domains.

A hypoadmissible approach region Aǫ
α(ξ), 0 < ǫ < 1, with vertex ξ ∈ ∂D and

aperture α > 0 is defined as follows ([7]):

Aǫ
α(ξ) = { z ∈ D : |(z − ξ, νξ)| < (1 + α)δξ(z), |z − ξ|2 < αδ1+ǫ

ξ (z) }.

We say that a mapping f ∈ H(D,Y ) has the hypoadmissible limit l ∈ Y at
ξ ∈ ∂D, if for every α > 0 and ǫ, 0 < ǫ < 1,

lim
Aǫ

α(ξ)∋z→ξ
sN (f(z), l) = 0.

Theorem 13. Let D be a strongly pseudoconvex domain in C
n (n ≥ 1), ξ ∈ ∂D,

and let Y be a relatively compact complex space of an Hermitian manifold N with
the Hermitian metric dsN . Let {am} be a sequence of points in D that tends to

6The article [11] was appeared on March 1986
7Received by the Editor on June 16, 1986
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a boundary point ξ ∈ ∂D at which the unit outward normal νξ exists and let
limm→∞ kD(am, am+1) = 0. If f ∈ H(D,Y ) is a normal mapping such that

lim
m→∞

sN(f(am), l) = 0

for some l ∈ Y , then

lim
Aǫ

α(ξ)∋z→ξ
sN (f(z), l) = 0 for all α > 0.

From this we immediately obtain the generalization of the Lindelöf-Lehto-
Virtanen’s theorem proved by the author [9] in 1982.

Theorem 14. Let D be a strongly pseudoconvex domain in C
n with C2-boundary

and let Y be a relatively compact complex space of an Hermitian manifold N with
the Hermitian metric dsN . Let f ∈ H(D,N) be normal in D and ξ ∈ ∂D. Let l ∈ Y
and suppose that f has the radial limit l at ξ. Then f has the hypoadmissible limit l
at ξ.

Results related to Theorem 14 can be found in [1],[6],[21],[22].
Example (Rudin,[31, 8.4.7]) Fix c > 1/2. The holomorphic function f(z1, z2) =

(1 − z1)
−cz2 ∈ Hp(B) for all p < 4/(2c − 1). The function f has the radial limit at

the point 1 = (1, 0) ∈ ∂B, but does not have a hypoadmissible limit at 1. It follows,
generally speaking, that the class of normal functions differs from the Hardy Hp-
classes even in the case of only holomorphic normal functions.

5 Polynomiality criterion for entire functions

A function f : C
n → C, n ≥ 1, holomorphic on the whole n-dimensional space

C
n is called an entire function.

If an entire function f has the homogenious polynomial expansion

f(z) =

∞
∑

j=0

Pj(z),

where Pj are homogenious polynomials in C
n of degree j, then the radial derivative

Rf is defined as ([31]):

Rf(z) =
∞
∑

j=1

jPj(z).

We prove the ”radial” polynomiality criterion for entire functions of several com-
plex variables.

Theorem 15. An entire function f , C
n, n ≥ 1, is a polynomial if and only if for

any complex line l ⊆ C
n passing through the origin we have

lim|λ|→∞
|Rf(l(λ))|

1 + |f(l(λ))|2
< ∞.
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n. – Mat. sb., 1973, no. 92(134), p. 622

(English transl. in Math U.S.S.R. sb., 1973, 21, p. 619).

[8] Dovbush P.V., Normal functions of many complex variables. – Vestnic Moskov. Univ. Ser. 1,
Mat. Meh., 1981, no. 1, p. 44 (English transl. in Moscow Univ. Bull., 1981, 36).

[9] Dovbush P.V., The Lindelöf theorem in C
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